Homework Five Is Alive
- Homework 5 has not been returned
- Waiting on a few students who want to turn it in later
- There will be no Number Six

Back to School
- What is operational semantics? When would you use contextual (small-step) semantics?
- What is denotational semantics?
- What is axiomatic semantics? What is a verification condition?

Today’s Cunning Plan
- Type System Overview
- First-Order Type Systems
 - Typing Rules
 - Typing Derivations
 - Type Safety

Why Typed Languages?
- Development
 - Type checking catches early many mistakes
 - Reduced debugging time
 - Typed signatures are a powerful basis for design
 - Typed signatures enable separate compilation
- Maintenance
 - Types act as checked specifications
 - Types can enforce abstraction
- Execution
 - Static checking reduces the need for dynamic checking
 - Safe languages are easier to analyze statically
 - the compiler can generate better code

Why Not Typed Languages?
- Static type checking imposes constraints on the programmer
 - Some valid programs might be rejected
 - But often they can be made well-typed easily
 - Hard to step outside the language (e.g., OO programming in a non-OO language, but cf. Ruby, OCaml, etc.)
- Dynamic safety checks can be costly
 - 50% is a possible cost of bounds-checking in a tight loop
 - In practice, the overall cost is much smaller
 - Memory management must be automatic ⇒ need a garbage collector with the associated run-time costs
 - Some applications are justified in using weakly-typed languages (e.g., by external safety proof)
Properties of Type Systems

- How do types differ from other program annotations:
 - Types are more precise than comments
 - Types are more easily mechanizable than program specifications
- Expected properties of type systems:
 - Types should be enforceable
 - Types should be checkable algorithmically
 - Typing rules should be transparent
 - It should be easy to see why a program is not well-typed

Why Formal Type Systems?

- Many typed languages have informal descriptions of the type systems (e.g., in language reference manuals)
- A fair amount of careful analysis is required to avoid false claims of type safety
- A formal presentation of a type system is a precise specification of the type checker
 - And allows formal proofs of type safety
- But even informal knowledge of the principles of type systems help

Formalizing a Type System

1. Syntax
 - Of expressions (programs)
 - Of types
 - Issues of binding and scoping
2. Static semantics (typing rules)
 - Define the typing judgment and its derivation rules
3. Dynamic semantics (e.g., operational)
 - Define the evaluation judgment and its derivation rules
4. Type soundness
 - Relates the static and dynamic semantics
 - State and prove the soundness theorem

Typing Judgments

- **Judgment** (recall)
 - A statement J about certain formal entities
 - Has a truth value $\models J$
 - Has a derivation $\vdash J$ (= “a proof”)
- A common form of typing judgment:
 $\Gamma \vdash e : \tau$ (e is an expression and τ is a type)
- Γ (Gamma) is a set of type assignments for the free variables of e
 - Defined by the grammar $\Gamma ::= \cdot | \Gamma, x : \tau$
 - Type assignments for variables not free in e are not relevant
 - e.g., $x : \text{int}, y : \text{int} \vdash x + y : \text{int}$

Typing rules

- **Typing rules** are used to derive typing judgments

Examples:

```
\Gamma \vdash 1 : \text{int}
\quad x : \tau \in \Gamma
\quad \Gamma \vdash x : \tau
\quad \Gamma \vdash e_1 : \text{int}
\quad \Gamma \vdash e_2 : \text{int}
\quad \Gamma \vdash e_1 + e_2 : \text{int}
```

Typing Derivations

- A **typing derivation** is a derivation of a typing judgment (big surprise there ...)
- Example:

```
x : \text{int} \vdash x : \text{int}
x : \text{int} \vdash 1 : \text{int}
x : \text{int} \vdash x + 1 : \text{int}
x : \text{int} \vdash x + (x + 1) : \text{int}
```

- We say $\Gamma \vdash e : \tau$ to mean there exists a derivation of this typing judgment (= “we can prove it”)
- **Type checking**: given Γ, e and τ, find a derivation
- **Type inference**: given Γ and e, find τ and a derivation
Proving Type Soundness

- A typing judgment is either true or false
- Define what it means for a value to have a type $v \in \| \tau \|$ (e.g. $5 \in \| \text{int} \|$ and $\text{true} \in \| \text{bool} \|$)
- Define what it means for an expression to have a type $e \in \| \tau \|$ iff $\forall v. (e \Downarrow v \Rightarrow v \in \| \tau \|)$
- Prove type soundness
 - If $\Gamma \vdash e : \tau$, then $e \in \| \tau \|$
 - or equivalently
 - If $\Gamma \vdash e : \tau$ and $e \Downarrow v$, then $v \in \| \tau \|$
- This implies safe execution (since the result of a unsafe execution is not in $\| \tau \|$ for any τ)

Upcoming Exciting Episodes

- We will give formal description of first-order type systems (no type variables)
 - Function types (simply typed λ-calculus)
 - Simple types (integers and booleans)
 - Structured types (products and sums)
 - Imperative types (references and exceptions)
 - Recursive types
- The type systems of most common languages are first-order
- The we move to second-order type systems
 - Polymorphism and abstract types

Simply-Typed Lambda Calculus

- Syntax:
 - Terms $e ::= x \mid \lambda x: \tau. e \mid e_1 e_2 \mid n \mid e_1 + e_2 \mid \text{iszero } e \mid \text{true} \mid \text{false} \mid \text{if } e_1 \text{ then } e_2 \text{ else } e_3$
 - Types $\tau ::= \text{int} \mid \text{bool} \mid \tau_1 \to \tau_2$
- $\tau_1 \to \tau_2$ is the function type
- \to associates to the right
- Arguments have typing annotations
- This language is also called F_1

Static Semantics of F_1

- The typing judgment $\Gamma \vdash e : \tau$
- Some (simpler) typing rules:

 \[
 \begin{align*}
 x : \tau & \in \Gamma & \Rightarrow \Gamma, x : \tau \vdash e : \tau' \\
 \Gamma \vdash x : \tau & & \Rightarrow \Gamma \vdash \lambda x : \tau. e : \tau' \to \tau' \\
 \Gamma \vdash e_1 : \tau_2 \to \tau & & \Gamma \vdash e_2 : \tau_2 \Rightarrow \Gamma \vdash e_1 e_2 : \tau \\
 \end{align*}
 \]

More Static Semantics of F_1

- Consider the term $\lambda x : \text{int}. \lambda b : \text{bool}. \text{if } b \text{ then } f x \text{ else } x$
 - With the initial typing assignment $f : \text{int} \to \text{int}$

 \[
 \begin{align*}
 \Gamma & : \text{f} : \text{int} \to \text{int} \quad \Gamma & : x : \text{int} \\
 \Gamma & : b : \text{bool} & \Gamma & : f x : \text{int} \quad \Gamma & : x : \text{int} \\
 \Gamma & : b : \text{bool} & \Gamma & : f x : \text{int} \quad \Gamma & : f x : \text{int} \\
 \end{align*}
 \]

 \[
 \begin{align*}
 \Gamma & : \text{f} : \text{int} \to \text{int} \quad \Gamma & : \text{x} : \text{int} \quad \Gamma & : \text{b} : \text{bool} \\
 \Gamma & : \text{f} : \text{int} \to \text{int} \quad \Gamma & : \text{x} : \text{int} \quad \Gamma & : \text{b} : \text{bool} \\
 \Gamma & : \text{true} : \text{bool} \quad \Gamma & : \text{not } e : \text{bool} \\
 \end{align*}
 \]

Typing Derivation in F_1

- Consider the term $\lambda x : \text{int}. \lambda b : \text{bool}. \text{if } b \text{ then } f x \text{ else } x$
 - With the initial typing assignment $f : \text{int} \to \text{int}$

 \[
 \begin{align*}
 \Gamma & : \text{f} : \text{int} \to \text{int} \quad \Gamma & : x : \text{int} \\
 \Gamma & : b : \text{bool} & \Gamma & : f x : \text{int} \quad \Gamma & : x : \text{int} \\
 \Gamma & : b : \text{bool} & \Gamma & : f x : \text{int} \quad \Gamma & : f x : \text{int} \\
 \end{align*}
 \]

Where $\Gamma = f : \text{int} \to \text{int}, x : \text{int}, b : \text{bool}$
Type Checking in F_1

- Type checking is easy because
 - Typing rules are *syntax directed*
 - Typing rules are *compositional* (what does this mean?)
 - All local variables are annotated with types

- In fact, type inference is also easy for F_1
- Without type annotations an expression may have **no unique type**

$$\vdash \lambda x. x : \text{int} \to \text{int}$$
$$\vdash \lambda x. x : \text{bool} \to \text{bool}$$

Operational Semantics of F_1

- Judgment:
 $$e \Downarrow v$$

- Values:
 $$v ::= n \mid \text{true} \mid \text{false} \mid \lambda x: \tau. e$$

- The evaluation rules ...
 - Audience participation time: raise your hand and give me an evaluation rule.

Operational Semantics of F_1 (Cont.)

- **Call-by-value** evaluation rules (sample)

$$\begin{array}{c}
\lambda x : \tau. e_1 \\ e_2 \Downarrow v_2 \\
\vdash e_1 [v_2/x] \Downarrow v
\end{array}$$
$$\begin{array}{c}
e_1 \Downarrow n_1 \\
e_2 \Downarrow n_2 \\
n = n_1 + n_2
\end{array}$$

- Evaluation is **undefined** for ill-typed programs!

Type Soundness for F_1

- Theorem: If $\vdash e : \tau$ and $e \Downarrow v$ then $\vdash v : \tau$
 - Also called, subject reduction theorem, type preservation theorem

- This is one of the most important sorts of theorems in PL
- Whenever you make up a new safe language you are expected to prove this
 - Examples: Vault, TAL, CCured, ...

Proof Approaches To Type Safety

- Theorem: If $\vdash e : \tau$ and $e \Downarrow v$ then $\vdash v : \tau$

- To address the issue of $[v/x]e'$:
 - This is it!

- Try to prove by induction on e
 - Won’t work because $[v/x]e'$, in the evaluation of e_1, e_2
 - Same problem with induction on $\vdash e : \tau$

- Try to prove by induction on τ
 - Won’t work because e_1 has a “bigger” type than e_1, e_2

- Try to prove by induction on $e \Downarrow v$
 - To address the issue of $[v/x]e'$
 - This is it!
Type Soundness Proof

- Consider the case
 \[e_1 \vdash \lambda x : \tau_2 \cdot e'_1 \quad e_2 \vdash \nu_2 \quad [v_2/x]e'_1 \vdash v \]
 \[e_1 \vdash \nu \]
 and by inversion on the derivation of \(e_1 : \tau \)

- From IH on \(e_1 \) we have \(\vdash \nu \)
- From IH on \(e_2 \) we have \(\vdash \nu_2 : \tau_2 \)
- Need to infer that \(\vdash [v_2/x]e'_1 : \tau \) and use the IH
 - We need a substitution lemma (by induction on \(e'_1 \))

Significance of Type Soundness

- The theorem says that the result of an evaluation has the same type as the initial expression
- The theorem does not say that
 - The evaluation never gets stuck (e.g., trying to apply a non-function, to add non-integers, etc.), nor that
 - The evaluation terminates
- Even though both of the above facts are true of \(F_1 \)
- We need a small-step semantics to prove that the execution never gets stuck
- I Assert: the execution always terminates in \(F_1 \)
 - When does the lambda calculus ever not terminate?

Small-Step Contextual Semantics for \(F_1 \)

- We define redexes
 \[r := n_1 + n_2 \quad \text{if } b \text{ then } e_1 \text{ else } e_2 \quad (\lambda x : \tau . e_1) v_2 \]
- and contexts
 \[H := H_1 + e_2 \quad n_1 + H_2 \quad \text{if } H \text{ then } e_1 \text{ else } e_2 \quad (\lambda x : \tau . e_1) H_2 \]
- and local reduction rules
 \[n_1 + n_2 \rightarrow n_1 \text{ plus } n_2 \quad \text{if true then } e_1 \text{ else } e_2 \rightarrow e_1 \]
 \[\text{if false then } e_1 \text{ else } e_2 \rightarrow e_2 \quad (\lambda x : \tau . e_1) v_2 \rightarrow [v_2/x]e_1 \]
- and one global reduction rule
 \[H[r] \rightarrow H[e] \text{ iff } r \rightarrow e \]

Decomposition Lemmas for \(F_1 \)

1. If \(\vdash e : \tau \) and \(e \) is not a (final) value then there exist (unique) \(H \) and \(r \) such that \(e = H[r] \)
 - any well-typed expression can be decomposed
 - any well-typed non-value can make progress
2. Furthermore, there exists \(\tau' \) such that \(\vdash r : \tau' \)
 - the redex is closed and well typed
3. Furthermore, there exists \(e' \) such that \(r \rightarrow e' \) and \(\vdash e' : \tau' \)
 - local reduction is type preserving
4. Furthermore, for any \(e' \), \(\vdash e' : \tau' \) implies \(\vdash H[e'] : \tau \)
 - the expression preserves its type if we replace the redex with an expression of same type

Type Safety of \(F_1 \)

- Type preservation theorem
 - If \(\vdash e : \tau \) and \(e \rightarrow e' \) then \(\vdash e' : \tau \)
 - Follows from the decomposition lemma
- Progress theorem
 - If \(\vdash e : \tau \) and \(e \) is not a value then there exists \(e' \) such that \(e \) can make progress: \(e \rightarrow e' \)
 - Progress theorem says that execution can make progress on a well typed expression
 - From type preservation we know the execution of well typed expressions never gets stuck
 - This is a (very!) common way to state and prove type safety of a language

What’s Next?

- We’ve got the basic simply-typed monomorphic lambda calculus
- Now let’s make it more complicated …
- By adding features!
Product Types: Static Semantics

• Extend the syntax with (binary) tuples
 \[e ::= ... | (e_1, e_2) | \text{fst } e | \text{snd } e \]
 \[\tau ::= ... | \tau_1 \times \tau_2 \]
 - This language is sometimes called $F_{1 \times}$

• Same typing judgment
 \[\Gamma \vdash e : \tau \]

\[
\begin{align*}
\Gamma &\vdash e_1 : \tau_1 & \Gamma &\vdash e_2 : \tau_2 \\
\Gamma &\vdash (e_1, e_2) : \tau_1 \times \tau_2 \\
\Gamma &\vdash e : \tau_1 \times \tau_2 & \Gamma &\vdash e : \tau_1 \times \tau_2 \\
\Gamma &\vdash \text{fst } e : \tau_1 & \Gamma &\vdash \text{snd } e : \tau_2
\end{align*}
\]

Product Types: Dynamic Semantics and Soundness

• New form of values:
 \[v ::= ... | (v_1, v_2) \]

• New (big step) evaluation rules:
 \[
 \begin{align*}
 e_1 \Downarrow v_1 &\quad e_2 \Downarrow v_2 \\
 (e_1, e_2) \Downarrow (v_1, v_2) \\
 \text{fst } e \Downarrow v_1 &\quad \text{snd } e \Downarrow v_2
 \end{align*}
 \]

• New contexts:
 \[H ::= ... | (H_1, e_2) | (v_1, H_2) | \text{fst } H | \text{snd } H \]

• New redexes:
 \[\text{fst } (v_1, v_2) \rightarrow v_1 \]
 \[\text{snd } (v_1, v_2) \rightarrow v_2 \]

• Type soundness holds just as before

General PL Feature Plan

• The general plan for language feature design
• You invent a new feature (tuples)
• You add it to the lambda calculus
• You invent typing rules and opsem rules
• You extend the basic proof of type safety
• You declare moral victory, and milling throngs of cheering admirers wait to carry you on their shoulders to be knighted by the Queen, etc.

Homework

• Read Wright and Felleisen article
• Work on your projects!
 - Status Update Due: Thursday Mar 23