Model Checking

Double Header

- Two Lectures
 - Model Checking
 - Software Model Checking
 - SLAM and BLAST

- “Flying Boxes”
 - It is traditional to describe this stuff (especially SLAM and BLAST) with high-gloss animation. Sorry.

- Some Key Players:
 - Model Checking: Ed Clarke, Ken McMillan, Amir Pnueli
 - SLAM: Tom Ball, Sriram Rajamani
 - BLAST: Ranjit Jhala, Rupak Majumdar, Tom Henzinger

Overarching Plan

- Model Checking
 - Transition Systems (Models)
 - Temporal Properties
 - LTL and CTL
 - (Explicit State) Model Checking
- Symbolic Model Checking
- Counterexample Guided Abstraction Refinement
 - Safety Properties
 - Predicate Abstraction (“c2bp”)
 - Software Model Checking (“bebop”)
 - Counterexample Feasibility (“newton”, “low 5”)
 - Abstraction Refinement (weakest pre, thrm prvr)

Spoiler Space

- This stuff really works!
 - This is not ESC or PCC or Denotational Semantics
- Symbolic Model Checking is a massive success in the model-checking field
 - I know people who think Ken McMillan walks on water in a “ha-ha-ha only serious” way
- SLAM took the PL world by storm
 - Spawned multiple copycat projects
 - Incorporated into Windows DDK as “static driver verifier”

Topic:
(Generic) Model Checking

- There are complete courses in model checking; I will skim.
 - Model Checking by Edmund C. Clarke, Orna Grumberg, and Doron A. Peled, MIT press
 - Symbolic Model Checking by Ken McMillan

Model Checking

- Model checking is an automated technique
- Model checking verifies transition systems
- Model checking verifies temporal properties
- Model checking can be also used for falsification by generating counter-examples
- Model Checker: A program that checks if a (transition) system satisfies a (temporal) property
Verification vs. Falsification

• An automated verification tool
 - can report that the system is verified (with a proof)
 - or that the system was not verified (with ???)
• When the system was not verified it would be helpful to explain why
 - Model checkers can output an error counter-example: a concrete execution scenario that demonstrates the error
• Can view a model checker as a falsification tool
 - The main goal is to find bugs
 - OK, so what can we verify or falsify?

Temporal Properties

• Temporal Property: A property with temporal operators such as “Invariant” or “eventually”
• Invariant(p): is true in a state if property p is true in every state on all execution paths starting at that state
 - The Invariant operator has different names in different temporal logics:
 - G, AG, □ (“goal” or “box” or “forall”)
• Eventually(p): is true in a state if property p is true at some state on every execution path starting from that state
 - F, AF, ♦ (“diamond” or “future” or “exists”)

An Example Concurrent Program

• A simple concurrent mutual exclusion program
• Two processes execute asynchronously
• There is a shared variable turn
• Two processes use the shared variable to ensure that they are not in the critical section at the same time
• Can be viewed as a “fundamental” program: any bigger concurrent one would include this one

10: while True do
11: wait(turn = 0); // critical section
12: turn := 1;
13: end while;

14: // concurrently with
15: // concurrently with
10: while True do
11: wait(turn = 1);
12: turn := 0;
13: end while

Reachable States of the Example Program

Each state is a valuation of all the variables: turn and the two program counters for two processes

Next: formalize this intuition ...

Transition Systems

• In model checking the system being analyzed is represented as a labeled transition system $T = (S, I, R, L)$
 - Also called a Kripke Structure
• S: Set of states // standard FSM
• $I \subseteq S$: Set of initial states // standard FSM
• $R \subseteq S \times S$: Transition relation // standard FSM
• $L: S \rightarrow P(\text{AP})$: Labeling function // this is new!
• AP: Set of atomic propositions (e.g., “x=5”)
 - Atomic propositions capture basic properties
 - For software, atomic props depend on variable values
 - The labeling function labels each state with the set of propositions true in that state

Properties of the Program

• Example: “In all the reachable states (configurations) of the system, the two processes are never in the critical section at the same time”
 - Equivalently, we can say that
 • Invariant($\neg (pc1=12 \land pc2=22)$)
• Also: “Eventually the first process enters the critical section”
 • Eventually($pc1=12$)
• “pc1=12”, “pc2=22” are atomic properties
Temporal Logics

- There are four basic temporal operators:
 1) $X p = \text{Next } p$, p holds in the next state
 2) $G p = \text{Globally } p$, p holds in every state, p is an invariant
 3) $F p = \text{Future } p$, p will hold in a future state, p holds eventually
 4) $p U q = \text{p Until } q$, assertion p will hold until q holds

- Precise meaning of these temporal operators are defined on execution paths

Execution Paths

- A path in a transition system is an infinite sequence of states
 (s_0, s_1, s_2, \ldots), such that $\forall i \geq 0. (s_i, s_{i+1}) \in R$
- A path (s_0, s_1, s_2, \ldots) is an execution path if $s_0 \in I$
- Given a path $x = (s_0, s_1, s_2, \ldots)$
 - x_i denotes the ith state s_i
 - x_i denotes the ith suffix $(s_i, s_{i+1}, s_{i+2}, \ldots)$
- In some temporal logics one can quantify the paths starting from a state using path quantifiers
 - $A : \text{for all paths}$
 - $E : \text{there exists a path}$

Linear Time Logic (LTL)

- LTL properties are constructed from atomic propositions in AP; logical operators \land, \lor, \neg; and temporal operators X, G, F, U.
- The semantics of LTL properties is defined on paths:
 Given a path x:
 - $x \models p$ iff $L(x_0, p)$ // atomic prop
 - $x \models X p$ iff $x_1 \models p$ // next
 - $x \models F p$ iff $\exists i \geq 0. x_i \models p$ // future
 - $x \models G p$ iff $\forall i \geq 0. x_i \models p$ // globally
 - $x \models p U q$ iff $\exists i \geq 0. x_i \models q$ and $\forall j < i. x_j \models p$ // until

Satisfying Linear Time Logic

- Given a transition system $T = (S, I, R, L)$ and an LTL property p, T satisfies p if all paths starting from all initial states I satisfy p
- Examples:
 - Invariant $(\neg (pc1=12 \land pc2=22))$:
 $G(\neg (pc1=12 \land pc2=22))$
 - Eventually$(pc1=12)$:
 $F(pc1=12)$

Computation Tree Logic (CTL)

- In CTL temporal properties use path quantifiers
 - $A : \text{for all paths}$
 - $E : \text{there exists a path}$
- The semantics of CTL properties is defined on states:
 Given a path x
 - $s \models p$ iff $L(s, p)$
 - $s_0 \models EX p$ iff \exists a path $(s_0, s_1, s_2, \ldots). s_1 \models p$
 - $s_0 \models AX p$ iff \forall paths $(s_0, s_1, s_2, \ldots). s_1 \models p$
 - $s_0 \models EG p$ iff \exists a path $(s_0, s_1, s_2, \ldots), \forall i \geq 0. s_i \models p$
 - $s_0 \models AG p$ iff \forall paths $(s_0, s_1, s_2, \ldots), \forall i \geq 0. s_i \models p$

Linear vs. Branching Time

- LTL is a linear time logic
 - When determining if a path satisfies an LTL formula we are only concerned with a single path
- CTL is a branching time logic
 - When determining if a state satisfies a CTL formula we are concerned with multiple paths
 - In CTL the computation is not viewed as a single path but as a computation tree which contains all the paths
 - The computation tree is obtained by unrolling the transition relation
- The expressive powers of CTL and LTL are incomparable
 - Basic temporal properties can be expressed in both logics
 - Not in this lecture, sorry! (Take a class on Modal Logics)
Remember the Example

![Diagram of a computation tree]

Linear vs. Branching Time

- **Linear Time View**
- **Branching Time View**

LTL Satisfiability Examples
- $\square p$ does not hold
- $\Diamond p$ holds

On this path: $F p$ holds, $G p$ does not hold, p does not hold, $X p$ does not hold, $X (X p)$ holds, $X (X (X p))$ does not hold

On this path: $F p$ holds, $G p$ holds, p holds, $X p$ holds, $X (X p)$ holds, $X (X (X p))$ holds

CTL Examples
- p does not hold
- p holds

At state s:
- $EF p$, $EX (EX p)$
- $AF \neg p$ holds
- $EG p$, p does not hold

At state s:
- $EF p$, $AF p$
- $EX (EX p)$
- $AG p$, $AG (\neg p)$, $EX p$
- $EG p$, p does not hold

At state s:
- $EF p$, $AF p$
- $AG p$, $AG (\neg p)$
- $EX p$, $EG p$, p does not hold

Model Checking Complexity
- Given a transition system $T = (S, I, R, L)$ and a CTL formula f
 - One can check if a state of the transition system satisfies the temporal logic formula f in $O(|f| \times (|S| + |R|))$ time
- Given a transition system $T = (S, I, R, L)$ and an LTL formula f
 - One can check if the transition system satisfies the temporal logic formula f in $O(2^{|f|} \times (|S| + |R|))$ time
- Model checking procedures can generate counter-examples without increasing the complexity of verification (= “for free”)

State Space Explosion
- The complexity of model checking increases linearly with respect to the size of the transition system $(|S| + |R|)$
- However, the size of the transition system $(|S| + |R|)$ is **exponential** in the number of variables and number of concurrent processes
- This exponential increase in the state space is called the **state space explosion**
 - Dealing with it is one of the major challenges in model checking research
Explicit-State Model Checking

• One can show the complexity results using depth first search algorithms
 - The transition system is a directed graph
 - CTL model checking is multiple depth first searches (one for each temporal operator)
 - LTL model checking is one nested depth first search (i.e., two interleaved depth-first-searches)
 - Such algorithms are called explicit-state model checking algorithms (details on next slides)

Temporal Properties \equiv Fixpoints

• States that satisfy $AG(p)$ are all the states which are not in $EF(-p)$
• Compute $EF(-p)$ as the fixpoint of $Func: 2^S \rightarrow 2^S$
• Given $Z \subseteq S$,
 - $Func(Z) = -p \cup reach-in-one-step(Z)$
 - or $Func(Z) = -p \cup EX(Z)$
• Actually, $EF(-p)$ is the least fixpoint of $Func$
 - smallest set Z such that $Z = Func(Z)$
 - to compute the least fixpoint, start the iteration from $Z=\emptyset$, and apply the $Func$ until you reach a fixpoint
 - This can be computed (unlike most other fixpoints)

Pictoral Backward Fixpoint

Initial states that violate $AG(p)$
= initial states that satisfy $EF(-p)$
states that can reach $-p = EF(-p)$
states that violate $AG(p)$

This fixpoint computation can be used for:
• verification of $EF(-p)$
• or falsification of $AG(p)$

... and a similar forward fixpoint handles the rest

Symbolic Model Checking

• Symbolic Model Checking represent state sets and the transition relation as Boolean logic formulas
 - Fixpoint computations manipulate sets of states rather than individual states
 - Recall: we needed to compute $EX(Z)$, but $Z \subseteq S$
• Forward and backward fixpoints can be computed by iterating manipulating these formulas
 - Forward, inverse image: Existential variable elimination
 - Conjunction (intersection), disjunction (union) and negation (set difference), and equivalence check
• Use an efficient data structure for manipulation of Boolean logic formulas
 - Binary Decision Diagrams (BDDs)

Binary Decision Diagrams (BDDs)

• Efficient representation for boolean functions (a set can be viewed as a function)
• Disjunction, conjunction complexity: at most quadratic
• Negation complexity: constant
• Equivalence checking complexity: constant or linear
• Image computation complexity: can be exponential

Symbolic Model Checking Using BDDs

• SMV (Symbolic Model Verifier) was the first CTL model checker to use a BDD representation
• It has been successfully used in verification of
 - hardware specifications, software specifications, protocols, etc.
• SMV verifies finite state systems
 - It supports both synchronous and asynchronous composition
 - It can handle boolean and enumerated variables
 - It can handle bounded integer variables using a binary encoding of the integer variables
 - It is not very efficient in handling integer variables although this can be fixed
Where’s the Beef

- To produce the explicit counter-example, use the “onion-ring method”
 - A counter-example is a valid execution path
 - For each Image Ring (= set of states), find a state and link it with the concrete transition relation R
 - Since each Ring is “reached in one step from previous ring” (e.g., Ring#3 = EX(Ring#4)) this works
 - Each state z comes with L(z) so you know what is true at each point (= what the values of variables are)

Initial states

Key Terms

- CEGAR = Counterexample guided abstraction refinement. A successful software model-checking approach. Sometimes called “Iterative Abstraction Refinement”.
- SLAM = The first CEGAR project/tool. Developed at MSR.
- Lazy Abstraction = A CEGAR optimization used in the BLAST tool from Berkeley.
- Other terms: c2bp, bebop, newton, npackets++, MAGIC, flying boxes, etc.

So ... what is Counterexample Guided Abstraction Refinement?
- Theorem Proving?
- Dataflow Analysis?
- Model Checking?

Example

Example () {
1: do{
2: lock();
3: old = new;
4: q = q->next;
5: if (q != NULL){
6: q->data = new;
7: unlock();
8: new ++;
9: }
10: while(new != old);
11: unlock();
12: return;
}

Verification by Theorem Proving

1. Loop Invariants
2. Logical formula
3. Check Validity

Invariant:

\[\text{lock } \land \text{a new = old} \lor \neg \text{lock } \land \text{a new \neq old} \]
Verification by Program Analysis

Example () {
 1: do{
 lock() // old = new
 q = q->next
 if (q != NULL) {
 3: q->data = new;
 unlock();
 new ++;
 }
 } while (new != old);
 2: unlock();
 5: return;
}

1. Dataflow Facts
2. Constraint System
3. Solve constraints

- Imprecision due to fixed facts
- Abstraction
- Type/Flow Analyses

scalable [CQUAL, ESP, MC]

Verification by Model Checking

Example () {
 1: do{
 lock();
 old = new;
 q = q->next;
 if (q != NULL) {
 3: q->data = new;
 unlock();
 new ++;
 }
 } while (new != old);
 2: unlock();
 5: return;
}

1. (Finite State) Program
2. State Transition Graph
3. Reachability

- Pgm → Finite state model
- State explosion
- State Exploration
- Counterexamples

Precise [SPIN, SMV, Bandera, JPF]

Combining Strengths

Theorem Proving
- Need loop invariants (will find automatically)
 - Behaviors encoded in logic (used to refine abstraction)
 - Theorem provers (used to compute successors, refine abstraction)

Program Analysis
- Imprecise (will be precise)
 - Abstraction (will shrink the state space we must explore)

Model Checking
- Finite-state model, state explosion
 - State Space Exploration (used to get a path sensitive analysis)
 - Counterexamples (used to find relevant facts, refine abstraction)

Homework

- Project Status Update
- Project Due Tue Apr 25
 - You have ~14 days to complete it.
 - Need help? Stop by my office or send email.