Modeling and Understanding Object-Oriented Programming

Official Survey
- Please fill out the Toolkit course survey
- 40142 CS 655-1
- Apr-21-2006 Midnight → May-04-2006 9am
 - Why not do it this evening?

Cunning Plan: Focus On Objects
- A Calculus For OO
- Operational Semantics
- Type System
- Expressive Power
- Encoding OO Features

The Need for a Calculus
- There are many OO languages with many combinations of features
- We would like to study these features formally in the context of some primitive language
 - Small, essential, flexible
- We want a “λ-calculus” or “IMP” for objects

Why Not Use λ-Calculus for OO?
- We could define some aspects of OO languages using λ-calculus
 - e.g., the operational semantics by means of a translation to λ-calculus
- But then the notion of object be secondary
 - Functions would still be first-class citizens
- Some typing considerations of OO languages are hard to express in λ-calculus
 - i.e., object-orientation is not simply “syntactic sugar”

Object Calculi Summary
- As in λ-calculi we have
 - operational semantics
 - denotational semantics
 - type systems
 - type inference algorithms
 - guidance for language design
- We will actually present a family of calculi
 - typed and untyped
 - first-order and higher-order type systems
- We start with an untyped calculus
An Untyped Object Calculus

- An object is a collection of methods
 - Their order does not matter

- Each method has
 - A bound variable for "self" (denoting the host object)
 - A body that produces a result

- The only operations on objects are:
 - Method invocations
 - Method update

Untyped Object Calculus Syntax

Syntax:

- Variables
 - $a, b ::= x$

- Object constructor
 - $[m_i = \zeta(x) \ b_i]$ - ζ is a variant of Greek letter σ

- Method invocation
 - $a.m$ - no arguments (just the self)

- Method update
 - $a.m \leftarrow \zeta(x) \ b$ - this is an expression!
 - the result is a copy of the object with one method changed

- This is called the untyped ζ-calculus (Abadi & Cardelli)

First Examples

- An object o with two methods m_1 and m_2
 - m_1 returns an empty object
 - m_2 invokes m_1 through self

- A bit cell with three methods: value, set and reset
 - value returns the value of the bit (0 initially)
 - set sets the value to 1, reset sets the value to 0
 - models state without λ/IMP (objects are primary)

 - $b = \{ \text{value} = \zeta(x). 0, \text{set} = \zeta(x). x.\text{value} \leftarrow \zeta(y). 1, \text{reset} = \zeta(x). x.\text{value} \leftarrow \zeta(y). 0 \}$

Operational Semantics

- $a \rightarrow b$ means that a reduces in one step to b
- The rules are: (let o be the object $[m_i = \zeta(x). b_i]$)

 - $o.m_i \rightarrow [o/x] b_i$
 - $o.m_k \leftarrow \zeta(y). b \rightarrow [m_k = \zeta(y). b_i, m_i = \zeta(x). b_j]$

 - We are dealing with a calculus of objects
 - This is a deterministic semantics (has the Church-Rosser or "diamond" property)

Expressiveness

- A calculus based only on methods with "self"
 - How expressive is this language? Let’s see.
 - Can we encode languages with fields? Yes.
 - Can we encode classes and subclassing? Hmm.
 - Can we encode λ-calculus? Hmm.

 - Encoding fields
 - Fields are methods that do not use self
 - Field access "o.f" is translated directly
 - Field update "o.f \leftarrow e" is translated to "o.f \leftarrow \zeta(x) e"
 - We will drop the $\zeta(x)$ from field definitions and updates

As Expressive As λ

- Encoding functions
 - A function is an object with two methods
 - arg - the actual value of the argument
 - val - the body of the function
 - A function call updates "arg" and invokes "val"

 - A conversion from λ-calculus expressions

 \[
 x = x.\text{arg} \quad \text{(read the actual argument)}
 e_1, e_2 = (e_1.\text{arg} \leftarrow \zeta(y) \ e_2).\text{val}
 \]

 - The initial value of the argument is undefined
 - From now on we use λ notation in addition to ζ
λ-calculus into ζ-calculus

- Consider the conversion of $(\lambda x.x) \, 5$

 Let $o = [\text{arg} = \zeta(y) \, z, \text{val} = \zeta(x) \, x, \text{arg}]$

 $(\lambda x.x) \, 5 = (o.\text{arg} \leftarrow \zeta(y) \, 5).\text{val}$

- Consider now the evaluation of this latter ζ-term

 Let $o' = [\text{arg} = \zeta(y) \, 5, \text{val} = \zeta(x) \, x, \text{arg}]$

 $(o.\text{arg} \leftarrow \zeta(y) \, 5).\text{val} \rightarrow o'.\text{val} = [\text{arg} = \zeta(y) \, 5, \text{val} = \zeta(x) \, x, \text{arg}]$.\text{val} \rightarrow x.\text{arg}[o'/x] = o'.\text{arg} \rightarrow 5[\text{y} = 5]$

Encoding Classes

- A **class** is just an object with a “new” method, for generating new objects
 - A repository of code for the methods of the generated objects (so that generated objects do not carry the methods with them)

 - **Example:** for generating $o = [m_1 = \zeta(x) \, b_1]$

 $c = [\text{new} = \zeta(z) \,[m_1 = \zeta(x) \, \text{z.m.x}]$, $m_1 = \zeta(\text{self}) \, \lambda x. \, b_1]$

 - The object can also carry “updateable” methods
 - Note that the m_i in c are fields (don’t use `self`)

Class Encoding Example

- A class of bit cells

 $\text{BitClass} = [\text{new} = \zeta(z). \,[\text{val} = \zeta(x) \, 0, \text{set} = \zeta(x) \, \text{z.set.x}, \text{reset} = \zeta(x) \, \text{z.reset.x}]]$

 $\text{set} = \zeta(z) \, \lambda x. \, x.\text{val} \leftarrow \zeta(y) \, 1$

 $\text{reset} = \zeta(z) \, \lambda x. \, x.\text{val} \leftarrow \zeta(y) \, 0$

- **Example:**

 $\text{BitClass}.\text{new} \rightarrow [\text{val} = \zeta(x) \, 0, \text{set} = \zeta(x) \, \text{BitClass.set.x}, \text{reset} = \zeta(x) \, \text{BitClass.reset.x}]$

 - The new object carries with it its identity
 - The indirection through BitClass expresses the dynamic dispatch through the BitClass method table

Inheritance and Subclassing

- **Inheritance** involves re-using method bodies

 $\text{FlipBitClass} = [\text{new} = \zeta(z). \,[\text{flip} = \zeta(z) \, \text{z.flip.x}, \text{flip} = \zeta(z) \, \lambda x. \, x.\text{val} \leftarrow \not(x.\text{val})]$

- **Example:**

 $\text{FlipBitClass}.\text{new} \rightarrow [\text{val} = \zeta(x) \, 0, \text{set} = \zeta(x) \, \text{BitClass.set.x}, \text{reset} = \zeta(x) \, \text{BitClass.reset.x}, \text{flip} = \zeta(x) \, \text{FlipBitClass.flip.x}]$

 - We can model method overriding in a similar way

Object Types

- The previous calculus was **untyped**

- Can write invocations of nonexistent methods

 $[\text{foo} = \zeta(x) \, \ldots].\text{bogus}$

- We want a type system that guarantees that well-typed expressions only invoke existing methods

- First attempt:

 - An object’s type **specifies the methods** it has available:

 $A ::= [m_1, m_2, \ldots, m_n]$

 - Not good enough:

 If $o : [m, \ldots]$ then we still don’t know if $o.\text{m.m}$ is safe

 - We also need the **type of the result of a method**

- Second attempt:

 $A ::= [m_1 : A_1, \ldots, m_n : A_n]$

 - Specify the available methods and their **result types**

 - Wherever an object is usable another with more methods should also be usable

 - This can be expressed using **(width) subtyping**:

 $$A \prec B \quad B \prec C \quad A \prec C$$

 $$n \geq k \quad \left[m_1 : A_1, \ldots, m_n : A_n \right] \prec \left[m_1 : A_1, \ldots, m_k : A_k \right]$$

First-Order Object Types. Subtyping

- Second attempt:

 $A ::= [m_1 : A_1]$

 - Specify the available methods and their **result types**

 - This can be expressed using **(width) subtyping**:

 $$A \prec B \quad B \prec C \quad A \prec C$$

 $$n \geq k \quad \left[m_1 : A_1, \ldots, m_n : A_n \right] \prec \left[m_1 : A_1, \ldots, m_k : A_k \right]$$
Typing Rules

\[\begin{align*}
 \Gamma, x : A & \vdash b_i : A_i \\
 \Gamma & \vdash b : A \\
 \Gamma = [m_i = \varsigma(x : A), b_i] & \vdash A_i \\
 \Gamma & \vdash b.m_i : A_i
\end{align*} \]

Type System Results

- **Theorem (Minimum types)**
 - If \(\Gamma \vdash a : A \) then there exists B such that for any A' such that \(\Gamma \vdash a : A' \) we have B < A'
 - If an expression has a type A then it has a minimum (most precise) type B

- **Theorem (Subject reduction)**
 - If \(\emptyset \vdash a : A \) and a \(\rightarrow v \) then \(\emptyset \vdash v : A \)
 - Type preservation. Evaluating a well-typed expression yields a value of the same type.

Type Examples

- Consider that old `BitCell` object
 \[
 o = \{ \text{value} = \varsigma(x).0, \text{set} = \varsigma(x).x.value \leftarrow \varsigma(y).1, \text{reset} = \varsigma(x).x.value \leftarrow \varsigma(y).0 \}
 \]
 - An appropriate type for it would be
 \[
 \text{BitType} = \{ \text{value} : \text{int}, \text{set} : \text{BitType}, \text{reset} : \text{BitType} \}
 \]
 - Note that this is a recursive type
 - Consider part of the derivation that \(o : \text{BitType} \) (for set)

\[
\begin{align*}
x : \text{BitType} & \vdash \text{value} : \text{int} \\
x : \text{BitType} & \vdash \text{value} : \text{int} \\
x : \text{BitType} & \vdash \text{value} : \text{int}
\end{align*}
\]

Unsoundness of Covariance

- Object types are invariant (not co/contravariant)
- Example of covariance being unsafe:
 - Let U = [] and L = [m : U]
 - By our rules L < U
 - Let P = [x : U, f : U] and Q = [x : L, f : U]
 - Assume we (mistakenly) say that Q < P (hoping for covariance in the type of x)
 - Consider the expression:
 \[
 q : Q = \{ x = [m = []], f = \varsigma(s : Q) s.x.m \}
 \]
 - Then q : P (by subsumption with Q < P)
 - Hence q.x \leftarrow [] : P
 - This yields the object [x = [], f = \varsigma(s : Q) s.x.m]
 - Hence (q.x \leftarrow []).f : U yet (q.x \leftarrow []).f fails!

Covariance Would Be Nice Though

- Recall the type of bit cells
 \[
 \text{BitType} = \{ \text{value} : \text{int}, \text{set} : \text{BitType}, \text{reset} : \text{BitType} \}
 \]
- Consider the type of flipable bit cells
 \[
 \text{FlipBitType} = \{ \text{value} : \text{int}, \text{set} : \text{FlipBitType}, \text{reset} : \text{FlipBitType}, \text{flip} : \text{FlipBitType} \}
 \]
- We would expect that \(\text{FlipBitType} < \text{BitType} \)
- *Does not work* because object types are invariant
- We need covariance + subtyping of recursive types
 - Several ways to fix this

Variance Annotations

- **Covariance fails if the method can be updated**
 - If we never update set, reset or flip we could allow covariance
- We annotate each method in an object type with a variance:
 - means read-only. Method invocation but not update
 - means write-only. Method update but not invocation
 - 0 means read-write. Allows both update and invocation
- We must change the typing rules to check annotations
- And we can relax the subtyping rules
Subtyping with Variance Annotations

- Invariant subtyping (Read-Write)
 \[[... m_0^0 : B ...] < [... m_0^0 : B' ...]\] if \(B = B'\)

- Covariant subtyping (Read-only)
 \[[... m^+ : B ...] < [... m^+ : B' ...]\] if \(B < B'\)

- Contravariant subtyping (Write-only)
 \[[... m^- : B ...] < [... m^- : B' ...]\] if \(B' < B\)

- In some languages these annotations are implicit
 - e.g., only fields can be updated

Classes, Types and Variance

- Recall the type of bit cells
 \(\text{BitType} = [\text{value}^0 : \text{int}, \text{set}^* : \text{BitType}, \text{reset}^* : \text{BitType}]\)

- Consider the type of flipable bit cells
 \(\text{FlipBitType} = [\text{value}^0 : \text{int}, \text{set}^* : \text{FlipBitType}, \text{reset}^* : \text{FlipBitType}, \text{flip}^* : \text{FlipBitType}]\)

- Now we have \(\text{FlipBitType} < \text{BitType}\)

Classes and Types

- Let \(A = [m : B, i]\) be an object type
- Let Class(A) be the type of classes for objects of type \(A\)
 \(\text{Class}(A) = [\text{new} : A, m_i : A \rightarrow B]\)
 - A class has a generator and the body for the methods

- Types are distinct from classes
 - A class is a "stamp" for creating objects
 - Many classes can create objects of the same type
 - Some languages take the view that two objects have the same type only if they are created from the same class
 - With this restriction, types are classes
 - In Java both classes and interfaces act as types

Classical Subtyping Rule for recursive types
\[
\mu \mu \sigma.
\]

Higher-Order Object Types

- We can define bounded polymorphism
- Example: we want to add a method to BitType that can copy the bit value of self to another object
 \(\text{lendVal} = \varsigma(z) \lambda x : t < \text{BitType}. x.\text{val} \leftarrow z.\text{val}\)
 - Can be applied to a BitType or a subtype
 \(\text{lendVal} : \forall t < \text{BitType}. t \rightarrow t\)
 - Returns something of the same type as the input
 - Can infer that \(z.\text{lendVal} y : \text{FlipBitType}\) if \(y : \text{FlipBitType}\)

- We can add bounded existential types
 - Ex: abstract type with interface "make" and "and"
 \(\text{Bits} = \exists t < \text{BitType}. \{\text{make} : \text{nat} \rightarrow t, \text{and} : t \rightarrow t \rightarrow t\}\)
 - We only know the representation type \(t < \text{BitType}\)

Conclusions

- Object calculi are both simple and expressive
- Simple: just method update and method invocation
- Functions vs. objects
 - Functions can be translated into objects
 - Objects can also be translated into functions
 - But we need sophisticated type systems
 - A complicated translation
- Classes vs. objects
 - Class-based features can be encoded with objects: subclassing, inheritance, overriding

Homework

- Good luck with your project presentations!
- Have a lovely summer.