Lexical Analysis

Finite Automata

(Part 1 of 2)

• Informal Sketch of Lexical Analysis
 - Identifies tokens from input string
 - lexer : (char list) → (token list)

• Issues in Lexical Analysis
 - Lookahead
 - Ambiguity

• Specifying Lexers
 - Regular Expressions
 - Examples

Cunning Plan

One-Slide Summary

• **Lexical analysis** turns a stream of characters into a stream of tokens.

• **Regular expressions** are a way to specify sets of strings. We use them to describe tokens.
Recall: The Structure of a Compiler or Interpreter

Today we start Optimization.

Interpreter Only!

Compiler Only!

Lexical Analysis

- What do we want to do? Example:
  ```
  if (i == j)
      z = 0;
  else
      z = 1;
  ```

- The input is just a sequence of characters:
  ```
  \textbf{\textbackslash if (i == j)\textbackslash print } z = 0; \textbackslash print \textbackslash else\textbackslash print } z = 1;
  ```

- Goal: Partition input string into substrings
 - And classify them according to their role

What’s a Token?

- Output of lexical analysis is a list of tokens
- A token is a syntactic category
 - In English: noun, verb, adjective, …
 - In a programming language: Identifier, Integer, Keyword, Whitespace, …
- Parser relies on the token distinctions:
 - e.g., identifiers are treated differently than keywords
Tokens

- Tokens correspond to sets of strings.
- **Identifier**: strings of letters or digits, starting with a letter
- **Integer**: a non-empty string of digits
- **Keyword**: “else” or “if” or “begin” or ...
- **Whitespace**: a non-empty sequence of blanks, newlines, and tabs
- **OpenPar**: a left-parenthesis

Lexical Analyzer: Implementation

- An implementation must do two things:
 1. Recognize substrings corresponding to tokens
 2. Return the value or **lexeme** of the token
 - The lexeme is the substring

Example

- Recall:

```
\t\tif (i == j)\n\t\t\tz = 0;\n\t\telse\n\t\t\tz = 1;
```

- **Token-lexeme** pairs returned by the lexer:
 - (Whitespace, “\t”)
 - (Keyword, “if”)
 - (OpenPar, “(“)
 - (Identifier, “i”)
 - (Relation, “==”)
 - (Identifier, “j”)
 - ...

Lexical Analyzer: Implementation

- The lexer usually discards “uninteresting” tokens that don’t contribute to parsing.
- Examples: Whitespace, Comments
- Question: What happens if we remove all whitespace and all comments prior to lexing?

Lookahead

- Two important points:
 1. The goal is to partition the string. This is implemented by reading left-to-right, recognizing one token at a time
 2. “Lookahead” may be required to decide where one token ends and the next token begins
 - Even our simple example has lookahead issues
 - i vs. if
 - = vs. ==

Next We Need

- A way to describe the lexemes of each token
- A way to resolve ambiguities
 - Is if two variables i and I?
 - Is == two equal signs = =?
Regular Languages

- There are several formalisms for specifying tokens
 - Regular languages are the most popular
 - Simple and useful theory
 - Easy to understand
 - Efficient implementations

Languages

Def. Let \(\Sigma \) be a set of characters. A *language over \(\Sigma \)* is a set of strings of characters drawn from \(\Sigma \)

(\(\Sigma \) is called the *alphabet*)

Examples of Languages

- Alphabet = English characters
 - Language = English sentences
- Alphabet = ASCII
 - Language = C programs
- Not every string on English characters is an English sentence
- Note: ASCII character set is different from English character set
Notation

- Languages are sets of strings
- Need some notation for specifying which sets we want
- For lexical analysis we care about regular languages, which can be described using regular expressions.

Regular Expressions and Regular Languages

- Each regular expression is a notation for a regular language (a set of words)
 - You’ll see the exact notation in a minute!

- If A is a regular expression then we write L(A) to refer to the language denoted by A

Atomic Regular Expressions

- Single character: ‘c’
 \[L(‘c’) = \{ “c” \} \quad \text{(for any c \in \Sigma)} \]

- Concatenation: AB (where A and B are reg. exp.)
 \[L(AB) = \{ ab \mid a \in L(A) \text{ and } b \in L(B) \} \]

- Example: L(‘i’ ‘f’) = \{ “if” \}
 (we will abbreviate ‘i’ ‘f’ as ‘if’)
Compound Regular Expressions

• Union
 \[L(A \cup B) = \{ s \mid s \in L(A) \text{ or } s \in L(B) \} \]

• Examples:
 - ‘if’ | ‘then’ | ‘else’ = \{ “if”, “then”, “else”\}
 - ‘0’ | ‘1’ | … | ‘9’ = \{ “0”, “1”, …, “9” \}
 (note the … are just an abbreviation)

• Another example:
 (‘0’ | ‘1’) (‘0’ | ‘1’) = \{ “00”, “01”, “10”, “11” \}

More Compound Regular Expressions

• So far we do not have a notation for infinite languages
• Iteration: \(A^* \)
 \[L(A^*) = \{ “” \} \cup L(A) \cup L(AA) \cup L(AAA) \cup … \]

• Examples:
 - ‘0’* = \{ “”, “0”, “00”, “000”, …\}
 - ‘1’ ‘0’* = \{ strings starting with 1, followed by 0’s \}
• Epsilon:
 \(\epsilon \)
 \[L(\epsilon) = \{ “” \} \]

Example: Keyword

- Keyword: “else” or “if” or “begin” or …

 ‘else’ | ‘if’ | ‘begin’ | …

(Recall: ‘else’ abbreviates ‘e’ ‘l’ ‘s’ ‘e’)
Example: Integers

Integer: *a non-empty string of digits*

digit = ‘0’ | ‘1’ | ‘2’ | ‘3’ | ‘4’ | ‘5’ | ‘6’ | ‘7’ | ‘8’ | ‘9’

number = digit digit*

Abbreviation: A* = A A*

Example: Identifier

Identifier: *strings of letters or digits, starting with a letter*

letter = ‘A’ | … | ‘Z’ | ‘a’ | … | ‘z’

identifier = letter (letter | digit) *

Is (letter | digit) the same?

Example: Whitespace

Whitespace: *a non-empty sequence of blanks, newlines, and tabs*

(‘ ‘ | ‘\t’ | ‘\n’)*

(Can you spot a small mistake?)
Example: Phone Numbers
- Regular expressions are all around you!
- Consider (434) 924-1021
 \[\Sigma = \{ 0, 1, 2, 3, \ldots, 9, (,), - \} \]
 area = digit^3
 exchange = digit^3
 phone = digit^4
 number = ‘(‘ area ‘)’ exchange ‘-’ phone

Example: Email Addresses
- Consider weimer@cs.virginia.edu
 \[\Sigma = \text{letters} \cup \{ ., @ \} \]
 name = letter^*
 address = name ‘@’ name (‘.’ name)*

Summary
- Regular expressions describe many useful languages
- Next: Given a string \(s \) and a rexp \(R \), is \(s \in L(R) \)?
- But a yes/no answer is not enough!
- Instead: partition the input into lexemes
- We will adapt regular expressions to this goal
Outline

- Specifying lexical structure using regular expressions
- Finite automata
 - Deterministic Finite Automata (DFAs)
 - Non-deterministic Finite Automata (NFAs)
- Implementation of regular expressions
 \[\text{RegExp} \Rightarrow \text{NFA} \Rightarrow \text{DFA} \Rightarrow \text{Tables} \]

Regular Expressions =>
Lexical Spec. (1)

1. Select a set of tokens
 - Number, Keyword, Identifier, ...

2. Write a R.E. for the lexemes of each token
 - Number = digit*
 - Keyword = ‘if’ | ‘else’ | ...
 - Identifier = letter (letter | digit)*
 - OpenPar = ‘(‘
 - ...

Regular Expressions =>
Lexical Spec. (2)

3. Construct \(R \), matching all lexemes for all tokens

\[
R = \text{Keyword} | \text{Identifier} | \text{Number} | \ldots \\
= R_1 | R_2 | R_3 | \ldots
\]

Fact: If \(s \in L(R) \) then \(s \) is a lexeme
- Furthermore \(s \in L(R_j) \) for some “\(j \)”
- This “\(j \)” determines the token that is reported
4. Let the input be \(x_1 \ldots x_n \)
(\(x_i \) are characters in the language alphabet \(\Sigma \))
• For \(1 \leq i \leq n \) check
\(x_1 \ldots x_i \in L(R) \)?
5. It must be that
\(x_1 \ldots x_i \in L(R_j) \) for some \(i \) and \(j \)
6. Remove \(x_1 \ldots x_i \) from input and go to step (4.)

Lexing Example

\[R = \text{Whitespace} \mid \text{Integer} \mid \text{Identifier} \mid \text{'}+\text{'} \]

• Parse "f +3 +g"
 - "f" matches \(R \), more precisely \text{Identifier}
 - "+" matches \(R \), more precisely \text{'}+\text{'}
 - "3"
 - The token-lexeme pairs are
 (Identifier, "f"), (\text{'}+\text{'}, "+"), (Integer, "3")
 (Whitespace, \text{'}\text{'}), (\text{'}\text{'}\text{'}\text{'}), (Identifier, "g")
• We would like to drop the \text{Whitespace} tokens
 - after matching \text{Whitespace}, continue matching

Ambiguities (1)

• There are \textit{ambiguities} in the algorithm
• Example:
 \[R = \text{Whitespace} \mid \text{Integer} \mid \text{Identifier} \mid \text{'}+\text{'} \]
 • Parse "foo+3"
 - "f" matches \(R \), more precisely \text{Identifier}
 - But also "fo" matches \(R \), and "foo", but not "foo+"
• How much input is used? What if \(x_1 \ldots x_i \in L(R) \) and also \(x_1 \ldots x_k \in L(R) \)
 - "Maximal munch" rule: \textit{Pick the longest possible substring that matches} \(R \)
More Ambiguities

$R = \text{Whitespace} \mid \text{‘new’} \mid \text{Integer} \mid \text{Identifier}$

- Parse “new foo”
 - “new” matches R, more precisely ‘new’
 - but also Identifier, which one do we pick?
- In general, if $x_1 ... x_i \in L(R_j)$ and $x_1 ... x_i \in L(R_k)$
 - Rule: use rule listed first (j if $j < k$)
- We must list ‘new’ before Identifier

Error Handling

$R = \text{Whitespace} \mid \text{Integer} \mid \text{Identifier} \mid ‘+’$

- Parse “=56”
 - No prefix matches R: not “=”, nor “=5”, nor “=56”
- Problem: Can’t just get stuck …
- Solution:
 - Add a rule matching all “bad” strings; and put it last
- Lexer tools allow the writing of:
 $R = R_1 \mid ... \mid R_n \mid \text{Error}$
 - Token Error matches if nothing else matches

Summary

- Regular expressions provide a concise notation for string patterns
- Use in lexical analysis requires small extensions
 - To resolve ambiguities
 - To handle errors
- Good algorithms known (next)
 - Require only single pass over the input
 - Few operations per character (table lookup)
Finite Automata

- Regular expressions = specification
- Finite automata = implementation

- A finite automaton consists of
 - An input alphabet \(\Sigma \)
 - A set of states \(S \)
 - A start state \(n \)
 - A set of accepting states \(F \subseteq S \)
 - A set of transitions \(\text{state} \rightarrow \text{input state} \)

Finite Automata

- Transition
 \[s_1 \xrightarrow{a} s_2 \]
- Is read
 In state \(s_1 \) on input “a” go to state \(s_2 \)

- If end of input (or no transition possible)
 - If in accepting state \(\Rightarrow \) accept
 - Otherwise \(\Rightarrow \) reject

Finite Automata State Graphs

- A state
- The start state
- An accepting state
- A transition
A Simple Example

• A finite automaton accepts only “1”

• A finite automaton accepts a string if we can follow transitions labeled with the characters in the string from the start to some accepting state.

Another Simple Example

• A finite automaton accepting any number of 1’s followed by a single 0

• Alphabet $\Sigma = \{0,1\}$

• Check that “1110” is accepted but “110...” is not accepted.

And Another Example

• Alphabet $\Sigma = \{0,1\}$

• What language does this recognize?
And Another Example

- Alphabet still $\Sigma = \{ 0, 1 \}$
- The operation of the automaton is not completely defined by the input
 - On input “11” the automaton could be in either state

Epsilon Moves

- Another kind of transition: ε-moves
- Machine can move from state A to state B
 without reading input

Deterministic and Nondeterministic Automata

- **Deterministic Finite Automata (DFA)**
 - One transition per input per state
 - No ε-moves
- **Nondeterministic Finite Automata (NFA)**
 - Can have multiple transitions for one input in a given state
 - Can have ε-moves
- Finite automata have finite memory
 - Need only to encode the current state
Execution of Finite Automata

- A DFA can take only one path through the state graph
 - Completely determined by input

- NFAs can choose
 - Whether to make ε-moves
 - Which of multiple transitions for a single input to take

Acceptance of NFAs

- An NFA can get into multiple states

```
1 0 1
0 1 0 1
```

- Rule: NFA accepts if it can get in a final state

NFA vs. DFA (1)

- NFAs and DFAs recognize the same set of languages (regular languages)
 - They have the same expressive power

- DFAs are easier to implement
 - There are no choices to consider
NFA vs. DFA (2)
- For a given language the NFA can be simpler than the DFA
- DFA can be exponentially larger than NFA

Regular Expressions to Finite Automata
- High-level sketch
 - Regular expressions
 - Lexical Specification
 - Table-driven Implementation of DFA

Regular Expressions to NFA (1)
- For each kind of rexp, define an NFA
 - Notation: NFA for rexp A
 - For ε
 - For input a
Regular Expressions to NFA (2)

- For \(AB\)

- For \(A \mid B\)

Regular Expressions to NFA (3)

- For \(A^*\)

Example of RegExp -> NFA conversion

- Consider the regular expression \((1 \mid 0)^*1\)

- The NFA is
NFA to DFA: The Trick

- Simulate the NFA
- Each state of DFA
 = a non-empty *subset of states* of the NFA
- Start state
 = the set of NFA states reachable through ε-moves
 from NFA start state
- Add a transition $S \rightarrow a S'$ to DFA iff
 - S' is the set of NFA states reachable from the
 states in S after seeing the input a
 • considering ε-moves as well

NFA \rightarrow DFA Example
NFA → DFA: Remark

- An NFA may be in many states at any time
- How many different states?
- If there are N states, the NFA must be in some subset of those N states
- How many non-empty subsets are there?
 - \(2^N - 1\) = finitely many

Implementation

- A DFA can be implemented by a 2D table \(T\)
 - One dimension is “states”
 - Other dimension is “input symbols”
 - For every transition \(S_i \rightarrow^a S_k\), define \(T[i,a] = k\)
- DFA “execution”
 - If in state \(S_i\) and input \(a\), read \(T[i,a] = k\) and skip to state \(S_k\)
 - Very efficient

Table Implementation of a DFA

- \(T\)
- \(0\)
- \(1\)
- \(S\)
- \(T\)
- \(U\)

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>T</td>
<td>U</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>U</td>
</tr>
<tr>
<td>U</td>
<td>T</td>
<td>U</td>
</tr>
</tbody>
</table>
Implementation (Cont.)

- NFA \rightarrow DFA conversion is at the heart of tools such as flex or ocamllex
- But, DFAs can be huge
- In practice, flex-like tools trade off speed for space in the choice of NFA and DFA representations

PA1: Lexical Analysis

- Correctness is job #1.
 - And job #2 and #3!
- Tips on building large systems:
 - Keep it simple
 - Design systems that can be tested
 - Don’t optimize prematurely
 - It is easier to modify a working system than to get a system working

Homework

- Thursday: Chapter 2.4 - 2.4.1
 - 13 CD - 15 CD on the web
- Friday: PA1 due
- Next Tuesday: Chapters 2.3 - 2.3.2
 - Optional Wikipedia article