Lexical Analysis

Finite Automata

(Part 2 of 2)

Kinder, Gentler Nation

- In our post drop-deadline world ...
- ... things get easier.
- While we’re here: reading quiz.

Summary

- Regular expressions provide a concise notation for string patterns
- Use in lexical analysis requires small extensions
 - To resolve ambiguities
 - To handle errors
- Good algorithms known (next)
 - Require only single pass over the input
 - Few operations per character (table lookup)
Finite Automata

- Regular expressions = specification
- Finite automata = implementation

- A finite automaton consists of
 - An input alphabet Σ
 - A set of states S
 - A start state n
 - A set of accepting states $F \subseteq S$
 - A set of transitions $\text{state} \rightarrow \text{input state}$

Finite Automata

- Transition $s_1 \rightarrow^a s_2$
- Is read
 In state s_1 on input “a” go to state s_2
- If end of input (or no transition possible)
 - If in accepting state \Rightarrow accept
 - Otherwise \Rightarrow reject

Finite Automata State Graphs

- A state
- The start state
- An accepting state
- A transition a
A Simple Example

- A finite automaton that accepts only “1”

- A finite automaton accepts a string if we can follow transitions labeled with the characters in the string from the start to some accepting state

Another Simple Example

- A finite automaton accepting any number of 1’s followed by a single 0
- Alphabet $\Sigma = \{0, 1\}$

- Check that “1110” is accepted but “110…” is not

And Another Example

- Alphabet $\Sigma = \{0, 1\}$
- What language does this recognize?
And Another Example

- Alphabet still $\Sigma = \{ 0, 1 \}$

- The operation of the automaton is not completely defined by the input
 - On input “11” the automaton could be in either state

Epsilon Moves

- Another kind of transition: ε-moves

- Machine can move from state A to state B without reading input

Deterministic and Nondeterministic Automata

- **Deterministic Finite Automata (DFA)**
 - One transition per input per state
 - No ε-moves

- **Nondeterministic Finite Automata (NFA)**
 - Can have multiple transitions for one input in a given state
 - Can have ε-moves

- Finite automata have finite memory
 - Need only to encode the current state
Execution of Finite Automata

• A DFA can take only one path through the state graph
 - Completely determined by input

• NFAs can choose
 - Whether to make ε-moves
 - Which of multiple transitions for a single input to take

Acceptance of NFAs

• An NFA can get into multiple states

• Input:
 0 1 1 0 1 0 1

• Rule: NFA accepts if it can get in a final state

NFA vs. DFA (1)

• NFAs and DFAs recognize the same set of languages (regular languages)
 - They have the same expressive power

• DFAs are easier to implement
 - There are no choices to consider
NFA vs. DFA (2)

- For a given language the NFA can be simpler than the DFA

NFA

```
0 -> 1 -> 0
1 -> 0
```

DFA

```
0 -> 1 -> 0
1 -> 0
```

- DFA can be exponentially larger than NFA

Regular Expressions to Finite Automata

- High-level sketch

Regular expressions

<table>
<thead>
<tr>
<th>NFA</th>
<th>DFA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lexical Specification</td>
<td>Table-driven Implementation of DFA</td>
</tr>
</tbody>
</table>

Regular Expressions to NFA (1)

- For each kind of rexp, define an NFA
 - Notation: NFA for rexp A
```
A
```
- For ε
```
ε
```
- For input a
```
a
```
Regular Expressions to NFA (2)

- For \(AB \)
 ![Diagram](image1)

- For \(A | B \)
 ![Diagram](image2)

Regular Expressions to NFA (3)

- For \(A^* \)
 ![Diagram](image3)

Example of RegExp -> NFA conversion

- Consider the regular expression \((1 | 0)^*1 \)
- The NFA is
 ![Diagram](image4)
NFA to DFA: The Trick

- Simulate the NFA
- Each state of DFA
 - a non-empty *subset of states* of the NFA
- Start state
 - the set of NFA states reachable through ε-moves from NFA start state
- Add a transition $S \rightarrow^a S'$ to DFA iff
 - S' is the set of NFA states reachable from the states in S after seeing the input a
 - considering ε-moves as well

NFA \rightarrow DFA Example
NFA → DFA: Remark

- An NFA may be in many states at any time
- How many different states?
- If there are N states, the NFA must be in some subset of those N states
- How many non-empty subsets are there?
 - \(2^N - 1\) = finitely many

Implementation

- A DFA can be implemented by a 2D table T
 - One dimension is “states”
 - Other dimension is “input symbols”
 - For every transition \(S_i \rightarrow S_k\) define \(T[i, a] = k\)
- DFA “execution”
 - If in state \(S_i\) and input \(a\), read \(T[i, a] = k\) and skip to state \(S_k\)
 - Very efficient

Table Implementation of a DFA

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>T</td>
<td>U</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>U</td>
</tr>
<tr>
<td>U</td>
<td>T</td>
<td>U</td>
</tr>
</tbody>
</table>
Implementation (Cont.)

- NFA → DFA conversion is at the heart of tools such as flex or ocamllex
- But, DFAs can be huge
- In practice, flex-like tools trade off speed for space in the choice of NFA and DFA representations

PA1: Lexical Analysis

- Correctness is job #1.
 - And job #2 and #3!
- Tips on building large systems:
 - Keep it simple
 - Design systems that can be tested
 - Don’t optimize prematurely
 - It is easier to modify a working system than to get a system working

Lexical Analyzer Generator

- Tools like lex and flex and ocamllex will build lexers for you!
- You will use this for PA1
- I’ll explain ocamllex; others are similar
 - See PA1 documentation
Ocamllex “lexer.mll” file

```ml
let re_name = re,
rule normal_tokens = parse
  re1 { token1 }
| re2 { token2 }
and special_tokens = parse
| re_n { token_n }
```

Example “lexer.mll”

```ml
let digit = ['0' - '9']
rule initial = parse
  '/' { Tok_Divide }
| digit digit* { let token_string = Lexing.lexeme lexbuf in
              let token_val = int_of_string token_string in
              Tok_Integer(token_val) }
| _ { Printf.printf "Error!
"; exit 1 }
```

Adding Winged Comments

```ml
let digit = ['0' - '9']
rule initial = parse
  "//" { eol_comment }
| '/' { Tok_Divide }
| digit digit* { let token_string = Lexing.lexeme lexbuf in
              let token_val = int_of_string token_string in
              Tok_Integer(token_val) }
| _ { Printf.printf "Error!
"; exit 1 }
```

and eol_comment = parse
 "\n" { initial lexbuf }
| _ { eol_comment lexbuf }
Using Lexical Analyzer Generators

```
$ ocamllex lexer.mll
45 states, 1083 transitions, table size 4602 bytes

(* your main.ml file ... *)
let file_input = open_in "file.cl" in
let lexbuf = Lexing.from_channel file_input in
let token = Lexer.initial lexbuf in
match token with
| Tok_Divide -> printf "Divide Token!\n"
| Tok_Integer(x) -> printf "Integer Token = %d\n" x
```

How Big Is PA1?

- The reference “lexer.mll” file is 88 lines
 - Perhaps another 20 lines to keep track of input line numbers
 - Perhaps another 20 lines to open the file and get a list of tokens
 - Then 65 lines to serialize the output
 - I’m sure it’s possible to be smaller!

- Conclusion:
 - This isn’t a code slog, it’s about careful forethought and precision.

Homework

- Friday: PA1 due
- Next Tuesday: Chapters 2.3 - 2.3.2
 - Optional Wikipedia article