First, WA2

• **Pick it up!** Even if you got a passing grade you’ll want to see what we marked up.
• The midterm is *not* pass/fail.
• Derivations and parse trees are closely related, but if we ask you to draw a parse tree you must **draw the parse tree**.
• WA2#4 was *in the book* (Fig 2.34; you just had to substitute in k=3):

\[
S \rightarrow \alpha^k b \mid \alpha^k
\]

Second, PA2
Next, Let’s Talk About Midterm 1

Administration

- **Midterm 1**
 - Tuesday, February 27, in class
 - Be here on time (we start at 9:35, end at 10:40)
 - Everything up to parsing, no semantic analysis
 - We will vote (right now) for one of these:
 - Open note, open book
 - 1 cheat sheet, front and back, handwritten, by you!
 - In any event, no electronic devices or computers
- **Midterm review session**
 - You have until 1pm to list preferences in the midterm review session thread. Currently we won’t be having one. Hint: do it right after class.
- **Using the feedback form**
- **Written Assignments**: now on a 0-5 scale

In One Slide

- **Scoping rules** match identifier **uses** with identifier **definitions**.
- A **type** is a set of **values** coupled with a set of **operations** on those values.
- A **type system** specifies which operations are **valid** for which types.
- **Type checking** can be done **statically** (at compile time) or **dynamically** (at run time).
Outline

• The role of semantic analysis in a compiler
 – A laundry list of tasks
• Scope
• Types

The Compiler So Far

• Lexical analysis
 – Detects inputs with illegal tokens
• Parsing
 – Detects inputs with ill-formed parse trees
• Semantic analysis
 – Last "front end" phase
 – Catches more errors

What's Wrong?

• Example 1
 let y: Int in x + 3

• Example 2
 let y: String ← "abc" in y + 3
Why a Separate Semantic Analysis?

- Parsing cannot catch some errors
- Some language constructs are not context-free
 - Example: All used variables must have been declared (i.e. scoping)
 - Example: A method must be invoked with arguments of proper type (i.e. typing)

What Does Semantic Analysis Do?

- Many kinds of checks... cool checks:
 1. All identifiers are declared
 2. Static Types
 3. Inheritance relationships
 4. Classes defined only once
 5. Methods in a class defined only once
 6. Reserved identifiers are not misused
 And others...
- The requirements depend on the language
 - Which of these are checked by Ruby? Python?

Scope

- Scoping rules match identifier uses with identifier declarations
 - Important semantic analysis step in most languages
 - Including COOL!
Scope (Cont.)

- The **scope** of an identifier is the portion of a program in which that identifier is accessible.
- The same identifier may refer to different things in different parts of the program. Different scopes for the same name don’t overlap.
- An identifier may have restricted scope.

Static vs. Dynamic Scope

- Most languages have **static** scope:
 - Scope depends only on the program text, not run-time behavior.
 - Cool has static scope.
- A few languages are **dynamically** scoped:
 - Lisp, SNOBOL, Tex
 - Lisp has changed to mostly static scoping.
 - Scope depends on execution of the program.

Static Scoping Example

```plaintext
let x: Int <- 0 in
{
    x;
    { let x: Int <- 1 in
      x; }
    x;
}
```
Static Scoping Example (Cont.)

```plaintext
let x: Int <- 0 in
{
    x;
    { let x: Int <- 1 in
        x;
    };
    x;
}

Uses of x refer to closest enclosing definition.
```

Scope in Cool

- Cool identifier bindings are introduced by:
 - Class declarations (introduce class names)
 - Method definitions (introduce method names)
 - Let expressions (introduce object id’s)
 - Formal parameters (introduce object id’s)
 - Attribute definitions in a class (introduce object id’s)
 - Case expressions (introduce object id’s)

Implementing the Most-Closely Nested Rule

- Much of semantic analysis can be expressed as a recursive descent of an AST:
 - Process an AST node n
 - Process the children of n
 - Finish processing the AST node n
Implementing . . . (Cont.)

• Example: the scope of let bindings is one subtree

\[
\text{let } x: \text{Int } \leftarrow 0 \text{ in } e
\]

• x can be used in subtree e

Symbol Tables

• Consider again: let x: Int ← 0 in e

• Idea:
 - Before processing e, add definition of x to current definitions, overriding any other definition of x
 - After processing e, remove definition of x and restore old definition of x

• A symbol table is a data structure that tracks the current bindings of identifiers
 - You’ll need to make one for PA4
 - OCaml’s Hashtbl is designed to be a symbol table, so if you saved OCaml ... no, wait ...

Scope in Cool (Cont.)

• Not all kinds of identifiers follow the most-closely nested rule

• For example, class definitions in Cool
 - Cannot be nested
 - Are globally visible throughout the program

• In other words, a class name can be used before it is defined
Example: Use Before Definition

Class Foo {
 . . . let y: Bar in . . .
};

Class Bar {
 . . .
};

More Scope in Cool

Attribute names are **global** within the class in which they are defined

Class Foo {
 f(): Int { a);
 a: Int ← 0;
}

More Scope (Cont.)

- Method and attribute names have complex rules
- A **method** need not be defined in the class in which it is used, but in some parent class
 - This is standard **inheritance**!
- Methods may also be redefined (overridden)
Class Definitions

- Class names can be used before being defined
- We can’t check this property
 - using a symbol table
 - or even in one pass :-(
- Solution
 - Pass 1: Gather all class names
 - Pass 2: Do the checking
 - ?
 - Pass 4: Profit!
- Semantic analysis requires multiple passes
 - Probably more than two

Types

- What is a type?
 - The notion varies from language to language
- Consensus
 - A set of values
 - A set of operations on those values
- Classes are one instantiation of the modern notion of type

Why Do We Need Type Systems?

Consider the assembly language fragment

```
addi $r1, $r2, $r3
```

What are the types of $r1, $r2, $r3?
Types and Operations

• Certain operations are legal or valid for values of each type
 - It doesn’t make sense to add a function pointer and an integer in C
 - It does make sense to add two integers
 - But both have the same assembly language implementation!

Type Systems

• A language’s type system specifies which operations are valid for which types
 - The goal of type checking is to ensure that operations are used with the correct types
 • Enforces intended interpretation of values, because nothing else will!
 • Our last, best hope ... for victory!
 - Type systems provide a concise formalization of the semantic checking rules

What Can Types do For Us?

• Can detect certain kinds of errors
• Memory errors:
 - Reading from an invalid pointer, etc.
• Violation of abstraction boundaries:

 class FileSystem {
 open(x : String) : File {
 ...
 }
 ...
 }

 class Client {
 f(fs : FileSystem) {
 File fdesc <- fs.open("foo")
 ...
 } -- f cannot see inside fdesc !
 }
Type Checking Overview

- Three kinds of languages:
 - Statically typed: All or almost all checking of types is done as part of compilation (C, Java, Cool)
 - Dynamically typed: Almost all checking of types is done as part of program execution (Scheme, Ruby, Python, …)
 - Untyped: No type checking (machine code)

The Type Wars

- Competing views on static vs. dynamic typing
- Static typing proponents say:
 - Static checking catches many programming errors at compile time
 - Avoids overhead of runtime type checks
- Dynamic typing proponents say:
 - Static type systems are restrictive
 - Rapid prototyping easier in a dynamic type system

The Type Wars (Cont.)

- In practice, most code is written in statically typed languages with an “escape” mechanism
 - Unsafe casts in C, native methods in Java, unsafe modules in Modula-3
- Dynamic typing (sometimes called “duck typing”) is big in the scripting / glue world
Cool Types

- The types are:
 - Class names
 - SELF_TYPE
 - There are no unboxed base types (int in Java)

- The user declares types for all identifiers

- The compiler infers types for expressions
 - Infers a type for every expression

Type Checking and Type Inference

- Type Checking is the process of verifying fully typed programs

- Type Inference is the process of filling in missing type information

- The two are different, but are often used interchangeably

Rules of Inference

- We have seen two examples of formal notation specifying parts of a compiler
 - Regular expressions (for the lexer)
 - Context-free grammars (for the parser)

- The appropriate formalism for type checking is logical rules of inference
Why Rules of Inference?
• **Inference rules** have the form
 If Hypothesis is true, then Conclusion is true
• Type checking computes via reasoning
 If E₁ and E₂ have certain types, then E₃ has a certain type
• **Rules of inference** are a compact notation for “If-Then” statements

From English to an Inference Rule
• The notation is easy to read (with practice)
• Start with a simplified system and gradually add features
• Building blocks
 - Symbol \(\land \) is “and”
 - Symbol \(\Rightarrow \) is “if-then”
 - \(x:T \) is “\(x \) has type \(T \)”

From English to an Inference Rule (2)
If \(e₁ \) has type \(\text{Int} \) and \(e₂ \) has type \(\text{Int} \), then \(e₁ + e₂ \) has type \(\text{Int} \)

\[
(e₁ \text{ has type } \text{Int} \land e₂ \text{ has type } \text{Int}) \Rightarrow e₁ + e₂ \text{ has type } \text{Int}
\]

\[
(e₁ : \text{Int} \land e₂ : \text{Int}) \Rightarrow e₁ + e₂ : \text{Int}
\]
From English to an Inference Rule (3)

The statement
\[(e_1 : \text{Int} \land e_2 : \text{Int}) \Rightarrow e_1 + e_2 : \text{Int}\]
is a special case of
\[(\text{Hypothesis}_1 \land \ldots \land \text{Hypothesis}_n) \Rightarrow \text{Conclusion}\]

This is an inference rule

Notation for Inference Rules

• By tradition inference rules are written
 \[\vdash \text{Hypothesis}_1 \ldots \vdash \text{Hypothesis}_n \]
 \[\vdash \text{Conclusion}\]

• Cool type rules have hypotheses and conclusions of the form:
 \[\vdash e : T\]
• \(\vdash\) means “we can prove that . . .”

Two Rules

\[\vdash \text{Int} \quad (i \text{ is an integer})\]
\[\vdash e_1 : \text{Int}\]
\[\vdash e_2 : \text{Int}\]
\[\vdash e_1 + e_2 : \text{Int} \quad [\text{Add}]\]
Two Rules (Cont.)

- These rules give templates describing how to type integers and + expressions
- By filling in the templates, we can produce complete typings for expressions
- We can fill the template with ANY expression!

\[
\begin{align*}
\Gamma & : \text{true} : \text{Int} & \Gamma & : \text{false} : \text{Int} \\
\Gamma & : \text{true + false} : \text{Int}
\end{align*}
\]

Example: 1 + 2

\[
\begin{align*}
\Gamma & : 1 : \text{Int} & \Gamma & : 2 : \text{Int} \\
\Gamma & : 1 + 2 : \text{Int}
\end{align*}
\]

Homework

- Thursday: Reading!
- Thursday: WA3 due
- Friday: PA3 due
 - Parsing!
- Tuesday Feb 27 - Midterm 1 in Class