Them's fightin' words, mister...unless'n, o'course, them's just semantics.
Today’s Cunning Plan

• Review, Truth, and Provability
• Large-Step Opsem Commentary
• Small-Step Contextual Semantics
 - Reductions, Redexes, and Contexts
• Applications and Recent Research
Summary - Semantics

• A **formal semantics** is a system for assigning **meanings** to **programs**.

• For now, programs are IMP commands and expressions

• In **operational semantics** the meaning of a program is “what it evaluates to”

• Any opsem system gives **rules of inference** that tell you how to evaluate programs
Summary - Judgments

• Rules of inference allow you to derive judgments ("something that is knowable") like
 \[<e, \sigma> \Downarrow n \]
 - In state \(\sigma \), expression \(e \) evaluates to \(n \)
 \[<c, \sigma> \Downarrow \sigma' \]
 - After evaluating command \(c \) in state \(\sigma \) the new state will be \(\sigma' \)

• State \(\sigma \) maps variables to values (\(\sigma : L \rightarrow Z \))

• Inferences equivalent up to variable renaming:
 \[<c, \sigma> \Downarrow \sigma' \quad === \quad <c', \sigma_7> \Downarrow \sigma_8 \]
Notation: Rules of Inference

• We express the evaluation rules as rules of inference for our judgment
 - called the derivation rules for the judgment
 - also called the evaluation rules (for operational semantics)

• In general, we have one rule for each language construct:

\[
\begin{align*}
\langle e_1, \sigma \rangle \downarrow n_1 & \quad \langle e_2, \sigma \rangle \downarrow n_2 \\
\langle e_1 + e_2, \sigma \rangle \downarrow n_1 + n_2
\end{align*}
\]

This is the only rule for \(e_1 + e_2 \)
Rules of Inference

Hypothesis₁ ... Hypothesisₙ

Conclusion

\[\Gamma \vdash b : \text{bool} \quad \Gamma \vdash e₁ : \tau \quad \Gamma \vdash e₂ : \tau \]

\[\Gamma \vdash \text{if } b \text{ then } e₁ \text{ else } e₂ : \tau \]

- For any given proof system, a finite number of rules of inference (or schema) are listed somewhere
- Rule instances should be easily checked
- What is the definition of “NP”?
Derivation

- Tree-structured (conclusion at bottom)
- May include multiple sorts of rules-of-inference
- Could be constructed, typically are not
- Typically verified in polynomial time

\[
\begin{align*}
\Gamma(x) &= \text{int} \\
\Gamma &\vdash x : \text{int} \quad \text{var} \\
\Gamma &\vdash 3 : \text{int} \quad \text{int} \\
\Gamma &\vdash x > 3 : \text{bool} \quad \text{gt} \\
\Gamma &\vdash \text{while } x > 3 \text{ do } x := x - 1 \text{ done} \\
\end{align*}
\]

\[
\begin{align*}
\Gamma(x) &= \text{int} \\
\Gamma &\vdash x : \text{int} \quad \text{var} \\
\Gamma &\vdash x - 1 : \text{int} \quad \text{assign} \\
\Gamma &\vdash 1 : \text{int} \quad \text{sub} \\
\end{align*}
\]
Evaluation Rules (for Aexp)

<table>
<thead>
<tr>
<th>Rule</th>
<th>Expression</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\langle n, \sigma \rangle \Downarrow n)</td>
<td>(n)</td>
<td>(n) evaluated in the context of (\sigma)</td>
</tr>
<tr>
<td>(\langle x, \sigma \rangle \Downarrow \sigma(x))</td>
<td>(x)</td>
<td>Value of (x) in the context of (\sigma)</td>
</tr>
<tr>
<td>(\langle e_1, \sigma \rangle \Downarrow n_1)</td>
<td>(e_1)</td>
<td>Value of (e_1) in the context of (\sigma) is (n_1)</td>
</tr>
<tr>
<td>(\langle e_2, \sigma \rangle \Downarrow n_2)</td>
<td>(e_2)</td>
<td>Value of (e_2) in the context of (\sigma) is (n_2)</td>
</tr>
<tr>
<td>(\langle e_1 + e_2, \sigma \rangle \Downarrow n_1)</td>
<td>(e_1 + e_2)</td>
<td>Value of (e_1 + e_2) in the context of (\sigma) is (n_1) plus (n_2)</td>
</tr>
<tr>
<td>(\langle e_1 - e_2, \sigma \rangle \Downarrow n_1)</td>
<td>(e_1 - e_2)</td>
<td>Value of (e_1 - e_2) in the context of (\sigma) is (n_1) minus (n_2)</td>
</tr>
<tr>
<td>(\langle e_1 \cdot e_2, \sigma \rangle \Downarrow n_1)</td>
<td>(e_1 \cdot e_2)</td>
<td>Value of (e_1 \cdot e_2) in the context of (\sigma) is (n_1) times (n_2)</td>
</tr>
</tbody>
</table>

- This is called **structural operational semantics**
 - rules defined **based on the structure of the expression**
- These rules do **not** impose an order of evaluation!
Evaluation Rules (for Bexp)

\begin{align*}
\langle \text{true}, \sigma \rangle \downarrow & \text{true} \\
\langle \text{false}, \sigma \rangle \downarrow & \text{false} \\
\langle e_1, \sigma \rangle \downarrow & n_1 \\
\langle e_2, \sigma \rangle \downarrow & n_2 \\
\langle e_1 \leq e_2, \sigma \rangle \downarrow & n_1 \leq n_2 \\
\langle e_1 = e_2, \sigma \rangle \downarrow & n_1 = n_2 \\
\langle b_1, \sigma \rangle \downarrow & \text{false} \\
\langle b_1 \land b_2, \sigma \rangle \downarrow & \text{false} \\
\langle b_1, \sigma \rangle \downarrow & \text{true} \\
\langle b_2, \sigma \rangle \downarrow & \text{true} \\
\langle b_1 \land b_2, \sigma \rangle \downarrow & \text{true}
\end{align*}
How to Read the Rules?

• **Forward (top-down) = inference rules**
 - if we know that the hypothesis judgments hold then we can infer that the conclusion judgment also holds

- If we know that \(<e_1, \sigma> \downarrow 5 \) and \(<e_2, \sigma> \downarrow 7 \), then we can infer that \(<e_1 + e_2, \sigma> \downarrow 12 \)
How to Read the Rules?

• **Backward (bottom-up) = evaluation rules**
 - Suppose we want to evaluate $e_1 + e_2$, i.e., find n s.t. $e_1 + e_2 \Downarrow n$ is derivable using the previous rules
 - By inspection of the rules we notice that the last step in the derivation of $e_1 + e_2 \Downarrow n$ must be the addition rule
 • the other rules have conclusions that would not match $e_1 + e_2 \Downarrow n$
 • this is called reasoning by **inversion** on the derivation rules
Evaluation By Inversion

• Thus we must find n_1 and n_2 such that $e_1 \Downarrow n_1$ and $e_2 \Downarrow n_2$ are derivable
 - This is done recursively

• If there is exactly one rule for each kind of expression we say that the rules are syntax-directed
 - At each step at most one rule applies
 - This allows a simple evaluation procedure as above (recursive tree-walk)
 - True for our $Aexp$ but not $Bexp$. Why?
Evaluation of Commands

• The evaluation of a Com may have side effects but has no direct result
 - What is the result of evaluating a command?
• The “result” of a Com is a new state:
 \[<c, \sigma> \downarrow \sigma' \]

 - But the evaluation of Com might not terminate! Danger Will Robinson! (huh?)
Com Evaluation Rules 1

\[\langle \text{skip}, \sigma \rangle \Downarrow \sigma \]

\[\langle c_1, \sigma \rangle \Downarrow \sigma' \quad \langle c_2, \sigma' \rangle \Downarrow \sigma'' \]

\[\langle c_1 ; c_2, \sigma \rangle \Downarrow \sigma'' \]

\[\langle b, \sigma \rangle \Downarrow \text{true} \quad \langle c_1, \sigma \rangle \Downarrow \sigma' \]

\[\langle \text{if } b \text{ then } c_1 \text{ else } c_2, \sigma \rangle \Downarrow \sigma' \]

\[\langle b, \sigma \rangle \Downarrow \text{false} \quad \langle c_2, \sigma \rangle \Downarrow \sigma' \]

\[\langle \text{if } b \text{ then } c_1 \text{ else } c_2, \sigma \rangle \Downarrow \sigma' \]
Let's do while together
Com Evaluation Rules 3

\[
\begin{align*}
\langle e, \sigma \rangle & \Downarrow n \\
\langle x := e, \sigma \rangle & \Downarrow \sigma[x := n] \quad \text{Def:} \quad \sigma[x:= n](x) = n \\
& \quad \sigma[x:= n](y) = \sigma(y) \\
\langle b, \sigma \rangle & \Downarrow \text{false} \\
\langle \text{while } b \text{ do } c, \sigma \rangle & \Downarrow \sigma \\
\langle b, \sigma \rangle & \Downarrow \text{true} \\
\langle c; \text{while } b \text{ do } c, \sigma \rangle & \Downarrow \sigma' \\
\langle \text{while } b \text{ do } c, \sigma \rangle & \Downarrow \sigma'
\end{align*}
\]
Summary - Rules

• Rules of inference list the hypotheses necessary to arrive at a conclusion

\[\langle x, \sigma \rangle \downarrow \sigma(x) \quad \langle e_1, \sigma \rangle \downarrow n_1 \quad \langle e_2, \sigma \rangle \downarrow n_2 \]

\[\langle e_1 - e_2, \sigma \rangle \downarrow \text{n}_1 \text{ minus } \text{n}_2 \]

• A derivation involves interlocking (well-formed) instances of rules of inference

\[\langle 4, \sigma_3 \rangle \downarrow 4 \quad \langle 2, \sigma_3 \rangle \downarrow 2 \]

\[\langle 4 \times 2, \sigma_3 \rangle \downarrow 8 \quad \langle 6, \sigma_3 \rangle \downarrow 6 \]

\[\langle (4 \times 2) - 6, \sigma_3 \rangle \downarrow 2 \]
Operational Semantics
Small-Step Semantics

Sherlock saw the man using binoculars.
Provability

• Given an opsem system, \(<e, \sigma> \Downarrow n\) is **provable** if there exists a well-formed derivation with \(<e, \sigma> \Downarrow n\) as its conclusion
 - “well-formed” = “every step in the derivation is a valid instance of one of the rules of inference for this opsem system”
 - “\(\vdash <e, \sigma> \Downarrow n\)” = “it is provable that \(<e, \sigma> \Downarrow n\)”

• We would *like* truth and provability to be closely related
Truth?

• “A Vorlon said understanding is a three-edged sword. Your side, their side and the truth.”
 - Sheridan, *Into The Fire*

• We will **not formally define** “truth” yet

• Instead we appeal to your **intuition**
 - \(<2+2, \sigma> \downarrow 4\) \hspace{1cm} -- *should be* true
 - \(<2+2, \sigma> \downarrow 5\) \hspace{1cm} -- *should be* false
Completeness

• A proof system (like our operational semantics) is complete if every true judgment is provable.

• If we replaced the subtract rule with:

\[
\begin{align*}
&\langle e_1, \sigma \rangle \downarrow n \quad \langle e_2, \sigma \rangle \downarrow 0 \\
\hline
&\langle e_1 - e_2, \sigma \rangle \downarrow n
\end{align*}
\]

• Our opsem would be incomplete:

\[
\langle 4 - 2, \sigma \rangle \downarrow 2 \quad -- \text{true but not provable}
\]
Consistency

• A proof system is consistent (or sound) if every provable judgment is true.

• If we replaced the subtract rule with:

\[
\begin{align*}
&<e_1, \sigma> \Downarrow n_1 & <e_2, \sigma> \Downarrow n_2 \\
\hline
&<e_1 - e_2, \sigma> \Downarrow n_1 + 3
\end{align*}
\]

• Our opsem would be inconsistent (or unsound):
- \(<6-1, \sigma> \Downarrow 9\) -- false but provable

“A foolish consistency is the hobgoblin of little minds, adored by little statesmen and philosophers and divines.”
-- Ralph Waldo Emerson, Essays. First Series. Self-Reliance.
Desired Traits

- Typically a system (of operational semantics) is always **complete** (unless you forget a rule)
- If you are not careful, however, your system may be **unsound**
- Usually that is **very bad**
 - A paper with an unsound type system is usually rejected
 - Papers often prove (sketch) that a system is sound
 - Recent research (e.g., Engler, ESP) into useful but unsound systems exists, however
- In this class **your work should be complete and consistent** (e.g., on homework problems)

Dr. Peter Venkman: I'm a little fuzzy on the whole "good/bad" thing here. What do you mean, "bad"?

Dr. Egon Spengler: Try to imagine all life as you know it stopping instantaneously and every molecule in your body exploding at the speed of light.
With That In Mind

- We now return to opsem for IMP

\[
\begin{align*}
\text{Def: } \sigma[x:= n](x) &= n \\
\sigma[x:= n](y) &= \sigma(y)
\end{align*}
\]

\[
\frac{
<e, \sigma> \Downarrow n
}{
<x := e, \sigma> \Downarrow \sigma[x := n]
}
\]

\[
\frac{
<b, \sigma> \Downarrow \text{false}
}{
<\text{while } b \text{ do } c, \sigma> \Downarrow \sigma
}
\]

\[
\frac{
<b, \sigma> \Downarrow \text{true}
}{
<c; \text{while } b \text{ do } c, \sigma> \Downarrow \sigma'
}
\]

\[
<\text{while } b \text{ do } c, \sigma> \Downarrow \sigma'
\]
Command Evaluation Notes

- The order of evaluation is important
 - c_1 is evaluated before c_2 in $c_1; c_2$
 - c_2 is not evaluated in “if true then c_1 else c_2”
 - c is not evaluated in “while false do c”
 - b is evaluated first in “if b then c_1 else c_2”
 - this is explicit in the evaluation rules

- Conditional constructs (e.g., $b_1 \lor b_2$) have multiple evaluation rules
 - but only one can be applied at one time
Command Evaluation Trials

• The evaluation rules are not syntax-directed
 - See the rules for while, \(\wedge \)
 - The evaluation might not terminate

• Recall: the evaluation rules suggest an interpreter

• Natural-style semantics has two big disadvantages (continued ...)

Disadvantages of Natural-Style Operational Semantics

- It is hard to talk about commands whose evaluation does **not terminate**
 - i.e., when there is no σ' such that $<c, \sigma> \Downarrow \sigma'$
 - But that is true also of ill-formed or erroneous commands (in a richer language)!

- It does not give us a way to talk about **intermediate states**
 - Thus we cannot say that on a parallel machine the execution of two commands is interleaved (= no modeling threads)
Semantics Solution

- **Small-step semantics** addresses these problems
 - Execution is modeled as a (possible infinite) sequence of states

- Not quite as easy as large-step natural semantics, though

- **Contextual semantics** is a small-step semantics where the atomic execution step is a rewrite of the program
Contextual Semantics

• We will define a relation \(<c, \sigma> \rightarrow <c', \sigma'> \)
 - \(c' \) is obtained from \(c \) via an atomic rewrite step
 - Evaluation terminates when the program has been rewritten to a terminal program
 • one from which we cannot make further progress
 - For IMP the terminal command is “skip”
 - As long as the command is not “skip” we can make further progress
 • some commands \textit{never} reduce to skip (e.g., “while true do skip”)

Contextual Derivations

• In small-step contextual semantics, derivations are not tree-structured
• A **contextual semantics derivation** is a sequence (or list) of atomic rewrites:

\[
<x+(7-3), \sigma> \rightarrow <x+(4), \sigma> \rightarrow <5+4, \sigma> \rightarrow <9, \sigma>
\]

\[\sigma(x) = 5\]
What is an Atomic Reduction?

• What is an atomic reduction step?
 - Granularity is a choice of the semantics designer

• How to select the next reduction step, when several are possible?
 - This is the order of evaluation issue
Redexes

• A redex is a syntactic expression or command that can be reduced (transformed) in one atomic step.

• Redexes are defined via a grammar:

\[r ::= x \quad (x \in L) \]

\[\mid n_1 + n_2 \]

\[\mid x := n \]

\[\mid \text{skip; c} \]

\[\mid \text{if true then } c_1 \text{ else } c_2 \]

\[\mid \text{if false then } c_1 \text{ else } c_2 \]

\[\mid \text{while } b \text{ do } c \]

• For brevity, we mix exp and command redexes.

• Note that \((1 + 3) + 2\) is not a redex, but \(1 + 3\) is.
Local Reduction Rules for IMP

- One for each redex: \(<r, \sigma> \rightarrow <e, \sigma'>\)
 - means that in state \(\sigma\), the redex \(r\) can be replaced in \textit{one step} with the expression \(e\)

\(<x, \sigma> \rightarrow <\sigma(x), \sigma>\)

\(<n_1 + n_2, \sigma> \rightarrow <n, \sigma>\) \quad \text{where } n = n_1 \text{ plus } n_2

\(<n_1 = n_2, \sigma> \rightarrow <\text{true}, \sigma>\) \quad \text{if } n_1 = n_2

\(<x := n, \sigma> \rightarrow <\text{skip}, \sigma[x := n]>\)

\(<\text{skip}; c, \sigma> \rightarrow <c, \sigma>\)

\(<\text{if true then } c_1 \text{ else } c_2, \sigma> \rightarrow <c_1, \sigma>\)

\(<\text{if false then } c_1 \text{ else } c_2, \sigma> \rightarrow <c_2, \sigma>\)

\(<\text{while } b \text{ do } c, \sigma> \rightarrow <\text{if } b \text{ then } c; \text{ while } b \text{ do } c \text{ else } \text{skip}, \sigma>\)
The Global Reduction Rule

• General idea of contextual semantics
 - Decompose the current expression into the redex-to-reduce-next and the remaining program
 • The remaining program is called a context
 - Reduce the redex “r” to some other expression “e”
 - The resulting (reduced) expression consists of “e” with the original context
As A Picture (1)

(Context)
...
x := 2+2
 ...

Step 1: Find The Redex
As A Picture (2)

(Context)

...

x := 2 + 2 (redex)

...

Step 1: Find The Redex
Step 2: Reduce The Redex
As A Picture (3)

(Context)
...
x := 2+2 (redex)
...
4 (reduced)

Step 1: Find The Redex
Step 2: Reduce The Redex
Step 1: Find The Redex
Step 2: Reduce The Redex
Step 3: Replace It In The Context
Contextual Analysis

• We use H to range over contexts
• We write $H[r]$ for the expression obtained by placing redex r in context H
• Now we can define a small step

If $<r, \sigma> \rightarrow <e, \sigma'>$
then $<H[r], \sigma> \rightarrow <H[e], \sigma'>$
Contexts

- A **context** is like an expression (or command) with a marker • in the place where the redex goes

- **Examples:**
 - To evaluate “(1 + 3) + 2” we use the redex 1 + 3 and the context “• + 2”
 - To evaluate “if x > 2 then c₁ else c₂” we use the redex x and the context “if • > 2 then c₁ else c₂”
Context Terminology

- A context is also called an “expression with a hole”
- The marker • is sometimes called a hole
- $H[r]$ is the expression obtained from H by replacing • with the redex r

“Avoid context and specifics; generalize and keep repeating the generalization.”
-- Jack Schwartz
Contextual Semantics Example

- \(x := 1 \); \(x := x + 1 \) with initial state \([x := 0]\)

<table>
<thead>
<tr>
<th><Comm, State></th>
<th>Redex •</th>
<th>Context</th>
</tr>
</thead>
<tbody>
<tr>
<td>(<x := 1; x := x+1, [x := 0]>)</td>
<td>(x := 1)</td>
<td>•; (x := x+1)</td>
</tr>
<tr>
<td>(<\text{skip}; x := x+1, [x := 1]>)</td>
<td>skip; (x := x+1)</td>
<td>•</td>
</tr>
<tr>
<td>(<x := x+1, [x := 1]>)</td>
<td>(x)</td>
<td>(x := \bullet + 1)</td>
</tr>
</tbody>
</table>

What happens next?
Contextual Semantics Example

- \(x := 1 \); \(x := x + 1 \) with initial state \([x:=0]\)

<table>
<thead>
<tr>
<th><Comm, State></th>
<th>Redex (\bullet)</th>
<th>Context</th>
</tr>
</thead>
<tbody>
<tr>
<td>(<x := 1; x := x+1, [x := 0])></td>
<td>(x := 1)</td>
<td>(\bullet; x := x+1)</td>
</tr>
<tr>
<td>(<\text{skip}; x := x+1, [x := 1])></td>
<td>(\text{skip}; x := x+1)</td>
<td>(\bullet)</td>
</tr>
<tr>
<td>(<x := x+1, [x := 1])></td>
<td>(x)</td>
<td>(x := \bullet + 1)</td>
</tr>
<tr>
<td>(<x := 1 + 1, [x := 1])></td>
<td>(1 + 1)</td>
<td>(x := \bullet)</td>
</tr>
<tr>
<td>(<x := 2, [x := 1])></td>
<td>(x := 2)</td>
<td>(\bullet)</td>
</tr>
<tr>
<td>(<\text{skip}, [x := 2])></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
More On Contexts

• Contexts are defined by a grammar:
 \[H ::= \bullet \mid n + H \]
 \[\mid H + e \]
 \[\mid x := H \]
 \[\mid \text{if } H \text{ then } c_1 \text{ else } c_2 \]
 \[\mid H; c \]

• A context has exactly one \bullet\ marker
• A redex is never a value
What’s In A Context?

• Contexts specify precisely how to find the next redex
 - Consider $e_1 + e_2$ and its decomposition as $H[r]$
 - If e_1 is n_1 and e_2 is n_2 then $H = \bullet$ and $r = n_1 + n_2$
 - If e_1 is n_1 and e_2 is not n_2 then $H = n_1 + H_2$ and $e_2 = H_2[r]$
 - If e_1 is not n_1 then $H = H_1 + e_2$ and $e_1 = H_1[r]$
 - In the last two cases the decomposition is done recursively
 - Check that in each case the solution is unique
Unique Next Redex:
Proof By Handwaving Examples

• e.g. c = “c₁; c₂” - either
 - c₁ = skip and then c = H[skip; c₂] with H = •
 - or c₁ ≠ skip and then c₁ = H[r]; so c = H’[r] with H’ = H; c₂

• e.g. c = “if b then c₁ else c₂”
 - either b = true or b = false and then c = H[r] with H = •
 - or b is not a value and b = H[r]; so c = H’[r] with H’ = if H then c₁ else c₂
Context Decomposition

• Decomposition theorem:

 If \(c \) is not “skip” then there exist unique \(H \) and \(r \) such that \(c = H[r] \).

 - “Exist” means progress
 - “Unique” means determinism
Short-Circuit Evaluation

• What if we want to express short-circuit evaluation of \land?
 - Define the following contexts, redexes and local reduction rules

 $H ::= \ldots \mid H \land b_2$

 $r ::= \ldots \mid \text{true} \land b \mid \text{false} \land b$

 $<\text{true} \land b, \sigma> \rightarrow <b, \sigma>$

 $<\text{false} \land b, \sigma> \rightarrow <\text{false}, \sigma>$

 - the local reduction kicks in before b_2 is evaluated
Contextual Semantics Summary

- Can view \bullet as representing the program counter
- The advancement rules for \bullet are non-trivial
 - At each step the entire command is decomposed
 - This makes contextual semantics inefficient to implement directly

- The major advantage of contextual semantics: it allows a mix of local and global reduction rules
 - For IMP we have only local reduction rules: only the redex is reduced
 - Sometimes it is useful to work on the context too
 - We’ll do that when we study memory allocation, etc.
Reading Real-World Examples

- Cobbe and Felleisen, POPL 2005
- Small-step contextual opsem for Java
- Their rule for object field access:

\[P \vdash (E[\text{obj.fd}], S) \leftrightarrow (E[F(fd)], S) \]
where \(F = \text{fields}(S(\text{obj})) \) and \(fd \in \text{dom}(F) \)

\[P \vdash (E[\text{obj.fd}], S) \rightarrow (E[F(fd)], S) \]
- where \(F = \text{fields}(S(\text{obj})) \) and \(fd \in \text{dom}(F) \)

- They use “E” for context, we use “H”
- They use “S” for state, we use “σ”
Lost In Translation

• \(P \vdash <H[\text{obj.fd}], \sigma> \rightarrow <H[F(fd)], \sigma> \)
 - Where \(F = \text{fields}(\sigma(\text{obj})) \) and \(fd \in \text{dom}(F) \)

• They have “\(P \vdash \)”’, but that just means “it can be proved in our system given \(P \)”

• \(<H[\text{obj.fd}], \sigma> \rightarrow <H[F(fd)], \sigma> \)
 - Where \(F = \text{fields}(\sigma(\text{obj})) \) and \(fd \in \text{dom}(F) \)
Lost In Translation 2

- \(<H[\text{obj}.fd],\sigma> \rightarrow <H[F(fd)],\sigma>\)
 - Where \(F=\text{fields}(\sigma(\text{obj}))\) and \(fd \in \text{dom}(F)\)
- They model objects (like \text{obj}), but we do not (yet) - let’s just make \(fd\) a variable:
 - \(<H[fd],\sigma> \rightarrow <H[F(fd)],\sigma>\)
 - Where \(F=\sigma\) and \(fd \in L\)

Which is just our variable-lookup rule:

- \(<H[fd],\sigma> \rightarrow <H[\sigma(fd)],\sigma>\) (when \(fd \in L\))
“Sleep On It”

“The Semantics Pillow”

1. \[e_0 \rightarrow e_0' \]
 \[e_0 + e_1 \rightarrow e_0' + e_1 \]

2. \[e_1 \rightarrow e_1' \]
 \[m_0 + e_1 \rightarrow m_0 + e_1' \]

3. \[m_0 + m_1 \rightarrow m_2 \]

“Learn while you sleep!”

Only $19.95
Homework

• Homework 2 Out Today
 - Due Next Week
• Read Winskel Chapter 3
• Want an extra opsem review?
 - Natural deduction article
 - Plotkin Chapter 2
• Optional Philosophy of Science article