Proof Techniques for Operational Semantics
Small-Step Contextual Semantics

• In small-step contextual semantics, derivations are not tree-structured

• A contextual semantics derivation is a sequence (or list) of atomic rewrites:

\[\langle x + (7-3), \sigma \rangle \rightarrow \langle x + (4), \sigma \rangle \rightarrow \langle 5+4, \sigma \rangle \rightarrow \langle 9, \sigma \rangle \]

If \(\langle r, \sigma \rangle \rightarrow \langle e, \sigma' \rangle \)

then \(\langle H[r], \sigma \rangle \rightarrow \langle H[e], \sigma' \rangle \)

\(\sigma(x)=5 \)

\(r = \text{redex} \)

\(H = \text{context (has hole)} \)
Unique Next Redex: Proof By Handwaving Examples

• e.g. c = “c₁; c₂” - either
 - c₁ = skip and then c = H[skip; c₂] with H = •
 - or c₁ ≠ skip and then c₁ = H[r]; so c = H’[r] with H’ = H; c₂

• e.g. c = “if b then c₁ else c₂”
 - either b = true or b = false and then c = H[r] with H = •
 - or b is not a value and b = H[r]; so c = H’[r] with H’ = if H then c₁ else c₂
Context Decomposition

• Decomposition theorem:
 If \(c \) is not “skip” then there exist unique \(H \) and \(r \) such that \(c = H[r] \)
 - “Exist” means progress
 - “Unique” means determinism
Short-Circuit Evaluation

• What if we want to express short-circuit evaluation of \land?
 - Define the following contexts, redexes and local reduction rules

$$H ::= \ldots \mid H \land b_2$$

$$r ::= \ldots \mid true \land b \mid false \land b$$

$$<true \land b, \sigma> \rightarrow <b, \sigma>$$

$$<false \land b, \sigma> \rightarrow <false, \sigma>$$

- the local reduction kicks in before b_2 is evaluated
Contextual Semantics Summary

• Can view • as representing the program counter

• The advancement rules for • are non-trivial
 - At each step the entire command is decomposed
 - This makes contextual semantics inefficient to implement directly

• The major advantage of contextual semantics: it allows a mix of local and global reduction rules
 - For IMP we have only local reduction rules: only the redex is reduced
 - Sometimes it is useful to work on the context too
 - We’ll do that when we study memory allocation, etc.
“Sleep On It”

“The Semantics Pillow”

1. \[e_0 \rightarrow e'_0 \]
 \[e_0 + e_1 \rightarrow e'_0 + e_1 \]

2. \[e_1 \rightarrow e'_1 \]
 \[m_0 + e_1 \rightarrow m_0 + e'_1 \]

3. \[m_0 + m_1 \rightarrow m_2 \]

“Learn while you sleep!”

Only $19.95
Wei Hu Memorial Lecture

• I will give a **completely optional** bonus survey lecture: “A Recent History of PL in Context”
 - It will discuss what has been hot in various PL subareas in the last 20 years
 - This may help you get ideas for your class project or locate things that will help your real research
 - Put a tally mark on the sheet if you’d like to attend that day - I’ll pick a most popular day

• Likely Topics:
Cunning Plan for Proof Techniques

• Why Bother?
• Mathematical Induction
• Well-Founded Induction
• Structural Induction
 - “Induction On The Structure Of The Derivation”
Why Bother?

• I am loathe to teach you anything that I think is a waste of your time.
• Thus I must convince you that inductive opsem proof techniques are useful.
 - Recall class goals: understand PL research techniques and apply them to your research
• This motivation should also highlight where you might use such techniques in your own research.
Never Underestimate

“Any counter-example posed by the Reviewers against this proof would be a useless gesture, no matter what technical data they have obtained. Structural Induction is now the ultimate proof technique in the universe. I suggest we use it.” --- Admiral Motti, A New Hope
Classic Example (Schema)

• “A well-typed program cannot go wrong.”
 - Robin Milner

• When you design a new type system, you must show that it is safe (= that the type system is sound with respect to the operational semantics).

• A Syntactic Approach to Type Soundness. Andrew K. Wright, Matthias Felleisen, 1992.
 - Type preservation: “if you have a well-typed program and apply an opsem rule, the result is well-typed.”
 - Progress: “a well-typed program will never get stuck in a state with no applicable opsem rules”

• Done for real languages: SML/NJ, SPARK ADA, Java
 - PL/I, plus basically every toy PL research language ever.
Classic Examples

• CCured Project (Berkeley)
 - A program that is instrumented with CCured run-time checks (= “adheres to the CCured type system”) will not segfault (= “the x86 opsem rules will never get stuck”).

• Vault Language (Microsoft Research)
 - A well-typed Vault program does not leak any tracked resources and invokes tracked APIs correctly (e.g., handles IRQL correctly in asynchronous Windows device drivers, cf. Capability Calculus)

• RC - Reference-Counted Regions For C (Intel Research)
 - A well-typed RC program gains the speed and convenience of region-based memory management but need never worry about freeing a region too early (run-time checks).

• Typed Assembly Language (Cornell)
 - Reasonable C programs (e.g., device drivers) can be translated to TALx86. Well-typed TALx86 programs are type- and memory-safe.

• Secure Information Flow (Many, e.g., Volpano et al. ‘96)
 - Lattice model of secure flow analysis is phrased as a type system, so type soundness = noninterference.
Recent Examples

• “The proof proceeds by rule induction over the target term producing translation rules.”
 - Chakravarty et al. ’05

• “Type preservation can be proved by standard induction on the derivation of the evaluation relation.”
 - Hosoya et al. ’05

• “Proof: By induction on the derivation of N ↓ W.”
 - Sumi and Pierce ’05

• Method: chose four POPL 2005 papers at random, the three above mentioned structural induction.
 (emphasis mine)
Induction

• Most important technique for studying the formal semantics of prog languages
 - If you want to perform or understand PL research, you must grok this!

• Mathematical Induction (simple)
• Well-Founded Induction (general)
• Structural Induction (widely used in PL)
Mathematical Induction

• **Goal:** prove $\forall n \in \mathbb{N}. P(n)$

• **Base Case:** prove $P(0)$

• **Inductive Step:**
 - Prove $\forall n>0. P(n) \Rightarrow P(n+1)$
 - “Pick arbitrary n, assume $P(n)$, prove $P(n+1)$”

• Isabelle, why does induction work?
Why Does It Work?

- There are no infinite descending chains of natural numbers.
- For any n, $P(n)$ can be obtained by starting from the base case and applying n instances of the inductive step.
Well-Founded Induction

- A relation $\leq \subseteq A \times A$ is well-founded if there are no infinite descending chains in A
 - Example: $<_1 = \{ (x, x +1) \mid x \in \mathbb{N} \}$
 - aka the predecessor relation
 - Example: $< = \{ (x, y) \mid x, y \in \mathbb{N} \text{ and } x < y \}$

- **Well-founded induction:**
 - To prove $\forall x \in A. \ P(x)$ it is enough to prove $\forall x \in A. \ [\forall y \leq x \Rightarrow P(y)] \Rightarrow P(x)$
 - If \leq is $<_1$ then we obtain mathematical induction as a special case
Structural Induction

- Recall $e ::= n \mid e_1 + e_2 \mid e_1 * e_2 \mid x$

- Define $\leq \subseteq \text{Aexp} \times \text{Aexp}$ such that

 $e_1 \leq e_1 + e_2 \quad e_2 \leq e_1 + e_2$

 $e_1 \leq e_1 * e_2 \quad e_2 \leq e_1 * e_2$

 - no other elements of $\text{Aexp} \times \text{Aexp}$ are related by \leq

- **To prove** $\forall e \in \text{Aexp}. \ P(e)$

 - $\vdash \forall n \in \mathbb{Z}. \ P(n)$

 - $\vdash \forall x \in L. \ P(x)$

- $\vdash \forall e_1, e_2 \in \text{Aexp}. \ P(e_1) \land P(e_2) \Rightarrow P(e_1 + e_2)$

- $\vdash \forall e_1, e_2 \in \text{Aexp}. \ P(e_1) \land P(e_2) \Rightarrow P(e_1 * e_2)$
Notes on Structural Induction

• Called structural induction because the proof is guided by the structure of the expression

• One proof case per form of expression
 - Atomic expressions (with no subexpressions) are all base cases
 - Composite expressions are the inductive case

• This is the most useful form of induction in PL study
Example of Induction on Structure of Expressions

• Let
 - \(L(e) \) be the # of literals and variable occurrences in \(e \)
 - \(O(e) \) be the # of operators in \(e \)

• Prove that \(\forall e \in Aexp. \ L(e) = O(e) + 1 \)

• Proof: by induction on the structure of \(e \)
 - Case \(e = n. \) \(L(e) = 1 \) and \(O(e) = 0 \)
 - Case \(e = x. \) \(L(e) = 1 \) and \(O(e) = 0 \)
 - Case \(e = e_1 + e_2. \)
 - \(L(e) = L(e_1) + L(e_2) \) and \(O(e) = O(e_1) + O(e_2) + 1 \)
 - By induction hypothesis \(L(e_1) = O(e_1) + 1 \) and \(L(e_2) = O(e_2) + 1 \)
 - Thus \(L(e) = O(e_1) + O(e_2) + 2 = O(e) + 1 \)
 - Case \(e = e_1 \times e_2. \) Same as the case for \(+ \)
Other Proofs by Structural Induction on Expressions

- Most proofs for Aexp sublanguage of IMP
- **Small-step** and **natural** semantics obtain equivalent results:
 \[\forall e \in \text{Exp. } \forall n \in \mathbb{N}. \; e \rightarrow^* n \iff e \Downarrow n \]

- Structural induction on expressions works here because all of the semantics are syntax directed
Stating The Obvious (With a Sense of Discovery)

• You are given a concrete state σ.
• You have $\vdash <x + 1, \sigma> \downarrow 5$
• You also have $\vdash <x + 1, \sigma> \downarrow 88$
• Is this possible?
Why That Is Not Possible

- Prove that IMP is deterministic
 \[
 \forall e \in A\text{exp.} \forall \sigma \in \Sigma. \forall n, n' \in \mathbb{N}. \langle e, \sigma \rangle \Downarrow n \land \langle e, \sigma \rangle \Downarrow n' \Rightarrow n = n' \\
 \forall b \in B\text{exp.} \forall \sigma \in \Sigma. \forall t, t' \in \mathbb{B}. \langle b, \sigma \rangle \Downarrow t \land \langle b, \sigma \rangle \Downarrow t' \Rightarrow t = t' \\
 \forall c \in \text{Comm.} \forall \sigma, \sigma', \sigma'' \in \Sigma. \langle c, \sigma \rangle \Downarrow \sigma' \land \langle c, \sigma \rangle \Downarrow \sigma'' \Rightarrow \sigma' = \sigma''
 \]

- No immediate way to use mathematical induction

- For commands we cannot use induction on the structure of the command
 - while’s evaluation does not depend only on the evaluation of its strict subexpressions
 \[
 \langle b, \sigma \rangle \Downarrow \text{true} \quad \langle c, \sigma \rangle \Downarrow \sigma' \quad \langle \text{while } b \text{ do } c, \sigma \rangle \Downarrow \sigma''
 \]
 \[
 \Rightarrow \langle \text{while } b \text{ do } c, \sigma \rangle \Downarrow \sigma''
 \]
Recall Opsem

• **Operational semantics** assigns meanings to programs by listing **rules of inference** that allow you to prove **judgments** by making **derivations**.

• A **derivation** is a tree-structured object made up of valid instances of inference rules.
We Need Something New

- Some **more powerful** form of induction ...
- With all the bells and whistles!
Induction on the Structure of Derivations

- Key idea: The hypothesis does not just assume a $c \in \text{Comm}$ but the existence of a derivation of $<c, \sigma> \Downarrow \sigma'$
- Derivation trees are also defined inductively, just like expression trees
- A derivation is built of subderivations:

 $<x, \sigma_{i+1}> \Downarrow 5 - i \quad 5 - i \leq 5$

 $<x + 1, \sigma_{i+1}> \Downarrow 6 - i$

 $<x:=x+1, \sigma_{i+1}> \Downarrow \sigma_i$

 $<W, \sigma_i> \Downarrow \sigma_0$

 $<\text{while } x \leq 5 \text{ do } x := x + 1, \sigma_{i+1}> \Downarrow \sigma_0$

- Adapt the structural induction principle to work on the structure of derivations
Induction on Derivations

• To prove that for all derivations D of a judgment, property P holds

• For each derivation rule of the form

\[
\begin{array}{c}
H_1 \ldots H_n \\
\hline
C
\end{array}
\]

• Assume P holds for derivations of H_i (i = 1..n)
• Prove the the property holds for the derivation obtained from the derivations of H_i using the given rule
New Notation

• Write $D :: \text{Judgment}$ to mean “D is the derivation that proves Judgment”

• Example:

$D :: <x+1, \sigma> \Downarrow 2$
Induction on Derivations (2)

• Prove that evaluation of commands is deterministic:
 \[<c, \sigma> \Downarrow \sigma' \Rightarrow \forall \sigma'' \in \Sigma. <c, \sigma> \Downarrow \sigma'' \Rightarrow \sigma' = \sigma''\]

• Pick arbitrary \(c, \sigma, \sigma'\) and \(D :: <c, \sigma> \Downarrow \sigma'\)

• To prove:
 \[\forall \sigma'' \in \Sigma. <c, \sigma> \Downarrow \sigma'' \Rightarrow \sigma' = \sigma''\]
 - Proof: by induction on the structure of the derivation \(D\)

• Case: last rule used in \(D\) was the one for skip

 \[D :: ____________\]

 \[<\text{skip}, \sigma> \Downarrow \sigma\]

 - This means that \(c = \text{skip}\), and \(\sigma' = \sigma\)
 - By inversion \(<c, \sigma> \Downarrow \sigma''\) uses the rule for skip
 - Thus \(\sigma'' = \sigma\)
 - This is a base case in the induction
Induction on Derivations (3)

• Case: the last rule used in \(D \) was the one for sequencing

\[
D : \quad D_1 :: \langle c_1, \sigma \rangle \downarrow \sigma_1 \quad D_2 :: \langle c_2, \sigma_1 \rangle \downarrow \sigma' \\
\langle c_1; c_2, \sigma \rangle \downarrow \sigma'
\]

• Pick arbitrary \(\sigma'' \) such that \(D'' :: \langle c_1; c_2, \sigma \rangle \downarrow \sigma'' \).
 - by inversion \(D'' \) uses the rule for sequencing
 - and has subderivations \(D''_1 :: \langle c_1, \sigma \rangle \downarrow \sigma''_1 \) and \(D''_2 :: \langle c_2, \sigma''_1 \rangle \downarrow \sigma'' \)

• By induction hypothesis on \(D_1 \) (with \(D''_1 \)): \(\sigma_1 = \sigma''_1 \)
 - Now \(D''_2 :: \langle c_2, \sigma_1 \rangle \downarrow \sigma'' \)

• By induction hypothesis on \(D_2 \) (with \(D''_2 \)): \(\sigma'' = \sigma' \)

• This is a simple inductive case
Induction on Derivations (4)

- Case: the last rule used in D was `while true`

\[
\begin{align*}
D_1 :: <b, \sigma> & \Downarrow \text{true} \\
D_2 :: <c, \sigma> & \Downarrow \sigma_1 \\
D_3 :: <\text{while } b \text{ do } c, \sigma_1> & \Downarrow \sigma' \\
& \Downarrow <\text{while } b \text{ do } c, \sigma> \Downarrow \sigma'
\end{align*}
\]

- Pick arbitrary \(\sigma''\) such that \(D'' :: <\text{while } b \text{ do } c, \sigma> \Downarrow \sigma''\)
 - by inversion and determinism of boolean expressions, \(D''\) also uses the rule for `while true`
 - and has subderivations \(D''_2 :: <c, \sigma> \Downarrow \sigma''_1\) and \(D''_3 :: <W, \sigma''_1> \Downarrow \sigma''\)

- By induction hypothesis on \(D_2\) (with \(D''_2\)): \(\sigma_1 = \sigma''_1\)
 - Now \(D''_3 :: <\text{while } b \text{ do } c, \sigma_1> \Downarrow \sigma''\)

- By induction hypothesis on \(D_3\) (with \(D''_3\)): \(\sigma'' = \sigma'\)
What Do You, The Viewers At Home, Think?

- Let’s do **if true** together!
- Case: the last rule in D was **if true**

\[
D :: \begin{array}{c}
 D_1 :: <b, \sigma> \Downarrow \text{true} \\
 D_2 :: <c_1, \sigma> \Downarrow \sigma_1 \\
\end{array}
\begin{array}{c}
 \langle \text{if } b \text{ do } c_1 \text{ else } c_2, \sigma \rangle \Downarrow \sigma_1
\end{array}
\]

- Try to do this on a piece of paper. In a few minutes I’ll have some lucky winners come on down.
Induction on Derivations (5)

- Case: the last rule in D was \textit{if true}

\[
\begin{align*}
D :: & \quad D_1 :: <b, \sigma> \Downarrow \text{true} \\
& \quad D_2 :: <c1, \sigma> \Downarrow \sigma' \\
& \quad <\text{if } b \text{ do } c1 \text{ else } c2, \sigma> \Downarrow \sigma'
\end{align*}
\]

- Pick arbitrary \(\sigma''\) such that \(D'' :: <\text{if } b \text{ do } c1 \text{ else } c2, \sigma> \Downarrow \sigma''\)
 - By inversion and determinism, \(D''\) also uses \textit{if true}
 - And has subderivations \(D''_1 :: <b, \sigma> \Downarrow \text{true} \) and \(D''_2 :: <c1, \sigma> \Downarrow \sigma''\)

- By induction hypothesis on \(D_2\) (with \(D''_2\)): \(\sigma' = \sigma''\)
Induction on Derivations
Summary

• If you must prove $\forall x \in A. \ P(x) \implies Q(x)$
 - with A inductively defined and $P(x)$ rule-defined
 - we pick arbitrary $x \in A$ and $D :: P(x)$
 - we could do induction on both facts
 • $x \in A$ leads to induction on the structure of x
 • $D :: P(x)$ leads to induction on the structure of D
 - Generally, the induction on the structure of the derivation is more powerful and a safer bet

• Sometimes there are many choices for induction
 - choosing the right one is a trial-and-error process
 - a bit of practice can help a lot
Equivalence

• Two expressions (commands) are equivalent if they yield the same result from all states

\[e_1 \approx e_2 \iff \forall \sigma \in \Sigma. \forall n \in \mathbb{N}. \]

\[<e_1, \sigma> \downarrow n \iff <e_2, \sigma> \downarrow n \]

and for commands

\[c_1 \approx c_2 \iff \forall \sigma, \sigma' \in \Sigma. \]

\[<c_1, \sigma> \downarrow \sigma' \iff <c_2, \sigma> \downarrow \sigma' \]
Notes on Equivalence

• Equivalence is like logical validity
 - It must hold in all states (= all valuations)
 - \(2 \approx 1 + 1\) is like “\(2 = 1 + 1\) is valid”
 - \(2 \approx 1 + x\) might or might not hold.
 • So, 2 is not equivalent to \(1 + x\)

• Equivalence (for IMP) is **undecidable**
 - If it were decidable we could solve the halting problem for IMP. **How?**

• Equivalence justifies code transformations
 - compiler optimizations
 - code instrumentation
 - abstract modeling

• **Semantics** is the basis for proving equivalence
Equivalence Examples

• skip; c \equiv c

• while b do c \equiv

 if b then c; while b do c else skip

• If e_1 \equiv e_2 then x := e_1 \equiv x := e_2

• while true do skip \equiv while true do x := x + 1

• If c is

 while x \neq y do

 if x \geq y then x := x - y else y := y - x

then

 := 221; y := 527; c) \equiv (x := 17; y := 17)

(x
Potential Equivalence

- $\left(x := e_1; \ x := e_2 \right) \approx x := e_2$

- Is this a valid equivalence?
Not An Equivalence

- \((x := e_1; x := e_2) \sim x := e_2 \)
- "Iie. Chigau yo. Dame desu!"
- Not a valid equivalence for all \(e_1, e_2 \).
- Consider:
 - \((x := x+1; x := x+2) \sim x := x+2 \)
- But for \(n_1, n_2 \) it’s fine:
 - \((x := n_1; x := n_2) \approx x := n_2 \)
Proving An Equivalence

- Prove that “skip; c ≈ c” for all c
- Assume that D :: <skip; c, σ> ↓ σ'
- By inversion (twice) we have that

\[
\begin{align*}
D :: & \quad <\text{skip}, \sigma> \downarrow \sigma \\
\text{D} _1 :: & \quad <c, \sigma> \downarrow \sigma'
\end{align*}
\]

- Thus, we have D _1 :: <c, σ> ↓ σ'
- The other direction is similar
Proving An Inequivalence

- Prove that $x := y \nsim x := z$ when $y \neq z$
- It suffices to exhibit a σ in which the two commands yield different results

- Let $\sigma(y) = 0$ and $\sigma(z) = 1$
- Then

 $<x := y, \sigma> \Downarrow \sigma[x := 0]$
 $<x := z, \sigma> \Downarrow \sigma[x := 1]$
Summary of Operational Semantics

- Precise specification of dynamic semantics
 - order of evaluation (or that it doesn’t matter)
 - error conditions (sometimes implicitly, by rule applicability; “no applicable rule” = “get stuck”)
- Simple and abstract (vs. implementations)
 - no low-level details such as stack and memory management, data layout, etc.
- Often not compositional (see while)
- Basis for many proofs about a language
 - Especially when combined with type systems!
- Basis for much reasoning about programs
- Point of reference for other semantics
Homework

- Homework 1 Due Today
- Homework 2 Due Tuesday
 - No more homework overlaps.
- Read Winskel Chapter 5
 - Pay careful attention.
- Read Winskel Chapter 8
 - Summarize.