Symbolic Execution

I COULD RESTRUCTURE THE PROGRAM'S FLOW
OR USE ONE LITTLE 'GOTO' INSTEAD.

EH, SCREW GOOD PRACTICE. HOW BAD CAN IT BE?

Compile

goto main_sub3;

HOW ABOUT AN OUTLINE? OR SOME SCREEN SHOTS?
NO TIME.

WHAT DO YOU HAVE, THEN?
A SCENARIO DIORAMA.

TELL ME YOU'RE KIDDING. JUDGING BY THE DIORAMA, I THINK WE SHOULD USE MANAGED CODE.
Many turned in HW3 code like this:

```ocaml
let rec matches re s = match re with
| Star(r) -> union (singleton s) (matches (Concat(r,Star(r))) s)
```

Which is a direct translation of:

\[
R[r^*]s = \{s\} \cup R[rr^*]s
\]

or, equivalently:

\[
R[r^*]s = \{s\} \cup \{ y \mid \exists x \in R[r]s \land y \in R[r^*]x \}
\]

Why doesn’t this work?
Today’s Cunning Plan

- Symbolic Execution & Forward VCGen
- Handling **Exponential** Blowup
 - Invariants
 - Dropping Paths
- VCGen For Exceptions (double trouble)
- VCGen For Memory (McCarthyism)
- VCGen For Structures (have a field day)
- VCGen For “Dictator For Life”
Simple Assembly Language

- Consider the language of instructions:
 \[I ::= x := e \mid f() \mid \text{if } e \text{ goto } L \mid \text{goto } L \mid L: \mid \text{return } \mid \text{inv } e \]

- The “\text{inv } e” instruction is an annotation
 - Says that boolean expression \(e \) holds at that point

- Each function \(f() \) comes with \(\text{Pre}_f \) and \(\text{Post}_f \) annotations (\text{pre-} and \text{post-conditions})

- New Notation (yay!): \(I_k \) is the instruction at address \(k \)
Symex States

- We set up a symbolic execution state:
 \[\Sigma : \text{Var} \rightarrow \text{SymbolicExpressions} \]
 \[\Sigma(x) = \text{the symbolic value of } x \text{ in state } \Sigma \]
 \[\Sigma[x:=e] = \text{a new state in which } x \text{'s value is } e \]

- We use states as substitutions:
 \[\Sigma(e) \] - obtained from \(e \) by replacing \(x \) with \(\Sigma(x) \)

- Much like the opsem so far ...
Symex Invariants

• The symbolic executor tracks invariants passed
• A new part of symex state: \(\text{Inv} \subseteq \{1\ldots n\} \)
• If \(k \in \text{Inv} \) then \(I_k \) is an invariant instruction that we have already executed
• Basic idea: execute an \textit{inv} instruction only twice:
 - The first time it is encountered
 - Once more time around an \textit{arbitrary} iteration
Symex Rules

- Define a VC function as an interpreter:

\[\text{VC} : \text{Address} \times \text{SymbolicState} \times \text{InvariantState} \rightarrow \text{Assertion} \]

\[
\begin{align*}
\text{VC}(k, \Sigma, \text{Inv}) &= \\
\text{if } l_k = \text{goto L} \\
\text{VC}(L, \Sigma, \text{Inv}) &\land \\
\text{if } l_k = \text{if e goto L} \\
\neg e &\Rightarrow \text{VC}(k+1, \Sigma, \text{Inv}) \\
\text{if } l_k = x := e \\
\Sigma(\text{Post}_{\text{current-function}}) &\land \\
\text{if } l_k = \text{return} \\
\forall a_1..a_m. \Sigma'(\text{Post}_f) &\Rightarrow \\
\text{VC}(k+1, \Sigma', \text{Inv}) &\land \\
\text{if } l_k = f() \\
\text{(where } y_1, ..., y_m \text{ are modified by } f) \\
\text{and } a_1, ..., a_m \text{ are fresh parameters} \\
\Sigma' &= \Sigma[y_1 := a_1, ..., y_m := a_m] \\
\end{align*}
\]
Symex Invariants (2a)

Two cases when seeing an invariant instruction:

1. We see the invariant for the first time
 - \(l_k = \text{inv } e \)
 - \(k \notin \text{Inv} \) (= “not in the set of invariants we’ve seen”)
 - Let \(\{y_1, \ldots, y_m\} \) = the variables that could be modified on a path from the invariant back to itself
 - Let \(a_1, \ldots, a_m \) be fresh new symbolic parameters

\[
\text{VC}(k, \Sigma, \text{Inv}) = \\
\Sigma(e) \land \forall a_1 \ldots a_m. \Sigma'(e) \Rightarrow \text{VC}(k+1, \Sigma', \text{Inv} \cup \{k\})
\]

with \(\Sigma' = \Sigma[y_1 := a_1, \ldots, y_m := a_m] \)

(like a function call)
Symex Invariants (2b)

• We see the invariant for the second time
 - $I_k = \text{inv } E$
 - $k \in \text{Inv}$

 $\text{VC}(k, \Sigma, \text{Inv}) = \Sigma(e)$

 (like a function return)

• Some tools take a more simplistic approach
 - Do not require invariants
 - Iterate through the loop a fixed number of times
 - PREfix, versions of ESC (DEC/Compaq/HP SRC)
 - Sacrifice completeness for usability
Symex Summary

- Let x_1, \ldots, x_n be all the variables and a_1, \ldots, a_n fresh parameters
- Let Σ_0 be the state $[x_1 := a_1, \ldots, x_n := a_n]$
- Let \emptyset be the empty Inv set

• For all functions f in your program, prove:

$$\forall a_1 \ldots a_n. \Sigma_0(\text{Pre}_f) \Rightarrow \text{VC}(f_{\text{entry}}, \Sigma_0, \emptyset)$$

• If you start the program by invoking any f in a state that satisfies Pre_f, then the program will execute such that
 - At all “inv e” the e holds, and
 - If the function returns then Post_f holds

• Can be proved w.r.t. a real interpreter (operational semantics)

• Or via a proof technique called co-induction (or, assume-guarantee)
Forward VCGen Example

• Consider the program

Precondition: \(x \leq 0 \)

Loop: \(\text{inv } x \leq 6 \)

if \(x > 5 \) goto End

\(x := x + 1 \)

goto Loop

End: return Postcondition: \(x = 6 \)
Forward VGen Example (2)

\[\forall x. \]
\[x \leq 0 \Rightarrow \]
\[x \leq 6 \land \]
\[\forall x'. \]
\[(x' \leq 6 \Rightarrow x' > 5 \Rightarrow x' = 6 \]
\[\land \]
\[x' \leq 5 \Rightarrow x' + 1 \leq 6 \]

- VC contains both \textcolor{red}{proof obligations} and assumptions about the control flow
VCs Can Be Large

- Consider the sequence of conditionals
 \[(\text{if } x < 0 \text{ then } x := -x); (\text{if } x \leq 3 \text{ then } x += 3)\]
 - With the postcondition \(P(x)\)

- The VC is

 \[x < 0 \land -x \leq 3 \implies P(-x + 3) \land \]

 \[x < 0 \land -x > 3 \implies P(-x) \land \]

 \[x \geq 0 \land x \leq 3 \implies P(x + 3) \land \]

 \[x \geq 0 \land x > 3 \implies P(x) \]

- There is one conjunct for each path
 \(\implies\) exponential number of paths!
 - Conjuncts for infeasible paths have un-satisfiable guards!

- Try with \(P(x) = x \geq 3\)
VCs Can Be Exponential

- VCs are exponential in the size of the source because they attempt relative completeness:
 - Perhaps the correctness of the program must be argued independently for each path

- Unlikely that the programmer wrote a program by considering an exponential number of cases
 - But possible. Any examples? Any solutions?
VCs Can Be Exponential

- VCs are **exponential** in the size of the source because they attempt relative completeness:
 - Perhaps the correctness of the program must be argued independently for each path

- **Standard Solutions:**
 - Allow invariants even in straight-line code
 - And thus do not consider all paths independently!
Invariants in Straight-Line Code

• Purpose: modularize the verification task

• Add the command “after c establish Inv”
 - Same semantics as c (Inv is only for VC purposes)

\[
VC(\text{after } c \text{ establish } \text{Inv}, \ P) = \begin{align*}
\text{def} \\
VC(c, \text{Inv}) \land \forall x_i. \text{Inv} \Rightarrow P
\end{align*}
\]

- where \(x_i \) are the ModifiedVars(c)

• Use when \(c \) contains many paths

after if \(x < 0 \) then \(x := - x \) establish \(x \geq 0 \);
if \(x \leq 3 \) then \(x += 3 \) \{ P(x) \}

• VC is now:

\[
(x < 0 \Rightarrow -x \geq 0) \land (x \geq 0 \Rightarrow x \geq 0) \land \\
\forall x. x \geq 0 \Rightarrow (x \leq 3 \Rightarrow P(x+3) \land x > 3 \Rightarrow P(x))
\]
Dropping Paths

• In absence of annotations, we can drop some paths

\[VC(\text{if } E \text{ then } c_1 \text{ else } c_2, P) = \text{choose one of} \]

\[\begin{align*}
E & \Rightarrow VC(c_1, P) \land \neg E \Rightarrow VC(c_2, P) \quad \text{(drop no paths)} \\
E & \Rightarrow VC(c_1, P) \quad \text{(drops “else” path!)} \\
\neg E & \Rightarrow VC(c_2, P) \quad \text{(drops “then” path!)}
\end{align*} \]

• We sacrifice soundness! (we are now \textbf{unsound})

 - No more guarantees
 - Possibly still a good debugging aid

• Remarks:

 - A recent trend is to sacrifice soundness to increase usability (e.g., Metal, ESP, even ESC)
 - The PREfix tool considers only 50 non-cyclic paths through a function (almost at random)
VCGen for Exceptions

• We extend the source language with exceptions without arguments (cf. HW2):
 - `throw` throws an exception
 - `try c_1 catch c_2` executes c_2 if c_1 throws

• Problem:
 - We have non-local transfer of control
 - What is $VC(\text{throw}, P)$?
VCGen for Exceptions

• We extend the source language with exceptions without arguments (cf. HW2):
 - throw throws an exception
 - try \(c_1 \) catch \(c_2 \) executes \(c_2 \) if \(c_1 \) throws

• Problem:
 - We have non-local transfer of control
 - What is \(VC(\text{throw}, P) \) ?

• Standard Solution: use 2 postconditions
 - One for normal termination
 - One for exceptional termination
VCGen for Exceptions (2)

• $\text{VC}(c, P, Q)$ is a precondition that makes c either not terminate, or terminate normally with P or throw an exception with Q

• Rules

\[
\begin{align*}
\text{VC}(\text{skip}, P, Q) &= P \\
\text{VC}(c_1; c_2, P, Q) &= \text{VC}(c_1, \text{VC}(c_2, P, Q), Q) \\
\text{VC}(\text{throw}, P, Q) &= Q \\
\text{VC}(\text{try } c_1 \text{ catch } c_2, P, Q) &= \text{VC}(c_1, P, \text{VC}(c_2, P, Q)) \\
\text{VC}(\text{try } c_1 \text{ finally } c_2, P, Q) &= ?
\end{align*}
\]
VCGen Finally

- Given these:
 \[VC(c_1; c_2, P, Q) = VC(c_1, VC(c_2, P, Q), Q) \]
 \[VC(\text{try } c_1 \text{ catch } c_2, P, Q) = VC(c_1, P, VC(c_2, P, Q)) \]

- Finally is somewhat like “if”:
 \[VC(\text{try } c_1 \text{ finally } c_2, P, Q) = VC(c_1, VC(c_2, P, Q), \text{true}) \wedge VC(c_1, \text{true}, VC(c_2, Q, Q)) \]

- Which reduces to:
 \[VC(c_1, VC(c_2, P, Q), VC(c_2, Q, Q)) \]
Hoare Rules and the Heap

• When is the following Hoare triple valid?
 \{ A \} *x := 5 \{ *x + *y = 10 \}

• A should be “*y = 5 or x = y”

• The Hoare rule for assignment would give us:
 - \([5/*x](*x + *y = 10) = 5 + *y = 10 =\)
 - *y = 5 (we lost one case)

• Why didn’t this work?
Handling The Heap

• We do not yet have a way to talk about memory (the heap, pointers) in assertions

• Model the state of memory as a symbolic mapping from addresses to values:
 - If A denotes an address and M is a memory state then:
 - $\text{sel}(M,A)$ denotes the contents of the memory cell
 - $\text{upd}(M,A,V)$ denotes a new memory state obtained from M by writing V at address A
More on Memory

- We allow variables to range over memory states
 - We can quantify over all possible memory states
- Use the special pseudo-variable μ (mu) in assertions to refer to the current memory

Example:

$$\forall i. \ i \geq 0 \land i < 5 \implies \text{sel}(\mu, A + i) > 0$$

says that entries 0..4 in array A are positive
Hoare Rules: Side-Effects

• To model writes we use memory expressions
 - A memory write changes the value of memory

{ B[upd(μ, A, E)/μ] } *A := E {B}

• Important technique: treat memory as a whole
• And reason later about memory expressions with
 inference rules such as (McCarthy Axioms, ~‘67):

\[
\text{sel(upd}(M, A_1, V), A_2) = \begin{cases}
 V & \text{if } A_1 = A_2 \\
 \text{sel}(M, A_2) & \text{if } A_1 \neq A_2
\end{cases}
\]
Memory Aliasing

- Consider again: $\{ A \} \ *x := 5 \ \{ \ *x + \ *y = 10 \}$

- We obtain:

 $A = [\text{upd}(\mu, \ x, \ 5)/\mu] \ (*x + \ *y = 10)$

 $= [\text{upd}(\mu, \ x, \ 5)/\mu] \ (\text{sel}(\mu, \ x) + \text{sel}(\mu, \ y) = 10)$

 $= \text{sel}(\text{upd}(\mu, \ x, \ 5), \ x) + \text{sel}(\text{upd}(\mu, \ x, \ 5), \ y) = 10$

 $= 5 + \text{sel}(\text{upd}(\mu, \ x, \ 5), \ y) = 10$

 $= \text{if} \ x = y \ \text{then} \ 5 + 5 = 10 \ \text{else} \ 5 + \text{sel}\(\mu, \ y\) = 10$

 $= x = y \ \text{or} \ *y = 5$

- Up to (1) is theorem generation

- From (1) to (2) is theorem proving
Alternative Handling for Memory

• Reasoning about aliasing can be expensive
 - It is NP-hard (and/or undecideable)

• Sometimes completeness is sacrificed with the following (approximate) rule:

\[
\text{sel}(\text{upd}(M, A_1, V), A_2) = \begin{cases}
 V & \text{if } A_1 = (\text{obviously}) A_2 \\
 \text{sel}(M, A_2) & \text{if } A_1 \neq (\text{obviously}) A_2 \\
 P & \text{otherwise (p is a fresh new parameter)}
\end{cases}
\]

• The meaning of “obviously” varies:
 • The addresses of two distinct globals are ≠
 • The address of a global and one of a local are ≠

• PREfix and GCC use such schemes
Consider the program

- **Precondition:** \(B : \text{bool} \land A : \text{array(bool, L)} \)

 \begin{align*}
 1: & \quad I := 0 \\
 & \quad R := B \\
 3: & \quad \text{inv } I \geq 0 \land R : \text{bool} \\
 & \quad \text{if } I \geq L \text{ goto 9} \\
 & \quad \text{assert saferd}(A + I) \\
 & \quad T := *(A + I) \\
 & \quad I := I + 1 \\
 & \quad R := T \\
 & \quad \text{goto 3} \\
 9: & \quad \text{return } R
 \end{align*}

- **Postcondition:** \(R : \text{bool} \)
VCGen Overarching Example

∀A. ∀B. ∀L. ∀µ

B : bool ∧ A : array(bool, L) ⇒
0 ≥ 0 ∧ B : bool ∧
∀l. ∀R.

I ≥ 0 ∧ R : bool ⇒
I ≥ L ⇒ R : bool ∧

I < L ⇒ saferd(A + I) ∧
I + 1 ≥ 0 ∧

sel(µ, A + l) : bool

• VC contains both **proof obligations** and assumptions about the control flow
Mutable Records - Two Models

- Let \(r : \text{RECORD} \{ f1 : \text{T1}; f2 : \text{T2} \} \) END
- For us, records are reference types

Method 1: one “memory” for each record
- One index constant for each field
 - \(r.f1 \) is \(\text{sel}(r,f1) \) and \(r.f1 := E \) is \(r := \text{upd}(r,f1,E) \)

Method 2: one “memory” for each field
- The record address is the index
 - \(r.f1 \) is \(\text{sel}(f1,r) \) and \(r.f1 := E \) is \(f1 := \text{upd}(f1,r,E) \)

- Only works in strongly-typed languages like Java
 - Fails in C where \(\&r.f2 = \&r + \text{sizeof(T1)} \)
VC as a “Semantic Checksum”

• Weakest preconditions are an expression of the program’s semantics:
 - Two equivalent programs have logically equivalent WPs
 - No matter how different their syntax is!

• VC are almost as powerful
VC as a “Semantic Checksum” (2)

• Consider the “assembly language” program to the right

\[
\begin{align*}
x &:= 4 \\
(\forall x)(x := (x == 5) \land \neg (4 == 5) \\
x &:= \neg x \\
\text{assert } x
\end{align*}
\]

• High-level type checking is not appropriate here
• The VC is: \((4 == 5) : \text{bool} \land \neg (4 == 5)\)
• No confusion from reuse of \(x\) with different types
Invariance of VC Across Optimizations

- VC is so good at abstracting syntactic details that it is *syntactically preserved* by many common optimizations
 - Register allocation, instruction scheduling
 - Common subexp elim, constant and copy propagation
 - Dead code elimination
- We have *identical* VCs whether or not an optimization has been performed
 - Preserves syntactic form, not just semantic meaning!
- This can be used to verify correctness of compiler optimizations (Translation Validation)
VC Characterize a Safe Interpreter

- Consider a fictitious “safe” interpreter
 - As it goes along it performs checks (e.g. “safe to read from this memory addr”, “this is a null-terminated string”, “I have not already acquired this lock”)
 - Some of these would actually be hard to implement

- The VC describes all of the checks to be performed
 - Along with their context (assumptions from conditionals)
 - Invariants and pre/postconditions are used to obtain a finite expression (through induction)

- VC is valid \Rightarrow interpreter never fails
 - We enforce same level of “correctness”
 - But better (static + more powerful checks)
VC Big Picture

- Verification conditions
 - Capture the semantics of code + specifications
 - Language independent
 - Can be computed backward/forward on structured/unstructured code
 - Make Axiomatic Semantics practical
Invariants Are Not Easy

• Consider the following code from QuickSort

```c
int partition(int *a, int L₀, int H₀, int pivot) {
    int L = L₀, H = H₀;
    while(L < H) {
        while(a[L] < pivot) L ++;
        while(a[H] > pivot) H --;
        if(L < H) { swap a[L] and a[H] }
    }
    return L
}
```
• Consider verifying only memory safety
• What is the loop invariant for the outer loop?
Done!