MS Patch Tuesday - Plus ca change

• “eEye Digital Security has reported a vulnerability in Windows Media Player ... due to a boundary error within the processing of bitmap files (.bmp) and can be exploited to cause a heap-based buffer overflow via a specially crafted bitmap file that declares its size as 0 ... exploitation allows execution of arbitrary code”

• Six of seven “critical” or “important” bugs were found by people outside of Microsoft
Apologies to Ralph Macchio

• Daniel: You're supposed to teach and I'm supposed to learn. Four homeworks I've been working on IMP, I haven't learned a thing.
• Miyagi: You learn plenty.
• Daniel: I learn plenty, yeah. I learned how to analyze IMP, maybe. I evaluate your commands, derive your judgments, prove your soundness. I learn plenty!
• Miyagi: Not everything is as seems.
• Daniel: You're not even relatively complete! I'm going home, man.
• Miyagi: Daniel-san!
• Daniel: What?
• Miyagi: Come here. Show me “compute the VC”.
Abstract Interpretation (Non-Standard Semantics)

a.k.a.

“Picking The Right Abstraction”
The Problem

- It is extremely useful to predict program behavior \textit{statically} (= without running the program)
 - For optimizing compilers, program analyses, software engineering tools, finding security flaws, etc.
- The semantics we studied so far give us the precise behavior of a program
- However, precise static predictions are impossible
 - The exact semantics is \textit{not computable}
- We must settle for \textit{approximate}, but correct, static analyses (e.g. VC vs. WP)
The Plan

• We will introduce abstract interpretation by example
• Starting with a miniscule language we will build up to a fairly realistic application
• Along the way we will see most of the ideas and difficulties that arise in a big class of applications
A Tiny Language

• Consider the following language of arithmetic ("shrIMP")?

\[e ::= n \mid e_1 \times e_2 \]

• The denotational semantics of this language

\[[n] = n \]
\[[e_1 \times e_2] = [e_1] \times [e_2] \]

• We’ll take deno-sem as the “ground truth”

• For this language the precise semantics is computable (but in general it’s not)
An Abstraction

• Assume that we are interested not in the value of the expression, but only in its sign:
 - positive (+), negative (-), or zero (0)
• We can define an abstract semantics that computes only the sign of the result

\[\sigma : \text{Exp} \rightarrow \{-, 0, +\} \]

\[\sigma(n) = \text{sign}(n) \]

\[\sigma(e_1 \times e_2) = \sigma(e_1) \times \sigma(e_2) \]
I Saw the Sign

• Why did we want to compute the sign of an expression?
 - One reason: no one will believe you know abstract interp if you haven’t seen the sign thing

• What could we be computing instead?
 - Alex Aiken was here …
Correctness of Sign Abstraction

• We can show that the abstraction is correct in the sense that it predicts the sign

\[
\begin{align*}
[e] > 0 & \iff \sigma(e) = + \\
[e] = 0 & \iff \sigma(e) = 0 \\
[e] < 0 & \iff \sigma(e) = -
\end{align*}
\]

• Our semantics is abstract but precise

• Proof is by structural induction on the expression e
 - Each case repeats similar reasoning
Another View of Soundness

- Link each concrete value to an abstract one:
 \[\beta : \mathbb{Z} \rightarrow \{ -, 0, + \} \]
- This is called the **abstraction function** (\(\beta\))
 - This three-element set is the **abstract domain**
- Also define the **concretization function** (\(\gamma\)):
 \[\gamma : \{-, 0, +\} \rightarrow \mathcal{P}(\mathbb{Z}) \]
 \[
 \begin{align*}
 \gamma(+) &= \{ n \in \mathbb{Z} \mid n > 0 \} \\
 \gamma(0) &= \{ 0 \} \\
 \gamma(-) &= \{ n \in \mathbb{Z} \mid n < 0 \}
 \end{align*}
\]
Another View of Soundness 2

• Soundness can be stated succinctly

\[\forall e \in \text{Exp}. \ [e] \in \gamma(\sigma(e)) \]

(the real value of the expression is among the concrete values represented by the abstract value of the expression)

• Let \(C \) be the **concrete domain** (e.g. \(\mathbb{Z} \)) and \(A \) be the **abstract domain** (e.g. \(\{-, 0, +\} \))

• **Commutative diagram:**

\[
\begin{array}{ccc}
\text{Exp} & \xrightarrow{\sigma} & A \\
\downarrow{[\cdot]} & & \downarrow{\gamma} \\
C & \xrightarrow{\in} & \mathcal{P}(C)
\end{array}
\]
Another View of Soundness 3

• Consider the **generic abstraction** of an operator

\[\sigma(e_1 \text{ op } e_2) = \sigma(e_1) \text{ op } \sigma(e_2) \]

• This is sound iff

\[\forall a_1 \forall a_2. \gamma(a_1 \text{ op } a_2) \supseteq \{ n_1 \text{ op } n_2 \mid n_1 \in \gamma(a_1), n_2 \in \gamma(a_2) \} \]

• e.g. \[\gamma(a_1 \otimes a_2) \supseteq \{ n_1 \ast n_2 \mid n_1 \in \gamma(a_1), n_2 \in \gamma(a_2) \} \]

• This reduces the proof of correctness to **one proof for each operator**
Abstract Interpretation

• This is our first example of an abstract interpretation
• We carry out computation in an abstract domain
• The abstract semantics is a sound approximation of the standard semantics
• The concretization and abstraction functions establish the connection between the two domains
Adding Unary Minus and Addition

• We extend the language to
 \[e ::= n \mid e_1 \ast e_2 \mid - e \]

 \[
 \begin{array}{c|ccc}
 \ast & - & 0 & + \\
 \hline
 + & + & 0 & - \\
 \end{array}
 \]

 \[
 \begin{array}{c|ccc}
 + & - & 0 & + \\
 \hline
 - & - & - & ? \\
 0 & - & 0 & + \\
 + & ? & + & + \\
 \end{array}
 \]

• We define \(\sigma(-e) = \ominus \sigma(e) \)

• Now we add addition:
 \[e ::= n \mid e_1 \ast e_2 \mid - e \mid e_1 + e_2 \]

• We define \(\sigma(e_1 + e_2) = \sigma(e_1) \oplus \sigma(e_2) \)
Adding Addition

• The sign values are not closed under addition
• What should be the value of “+ ⊕ -”?
• Start from the soundness condition:
 \[\gamma(+ \oplus -) \supseteq \{ n_1 + n_2 \mid n_1 > 0, n_2 < 0 \} = \mathbb{Z} \]

• We don’t have an abstract value whose concretization includes \(\mathbb{Z} \), so we add one:
 \[\top \] ("top" = "don’t know")

\[
\begin{array}{c|cccc}
\oplus & - & 0 & + & \top \\
\hline
- & - & - & \top & \top \\
0 & - & 0 & + & \top \\
+ & \top & + & + & \top \\
\top & \top & \top & \top & \top \\
\end{array}
\]
Loss of Precision

• Abstract computation may lose information:

\[
\llbracket (1 + 2) + -3 \rrbracket = 0
\]

but:

\[
\sigma((1+2) + -3) = \sigma(1) \oplus \sigma(2) \oplus \sigma(-3) = \oplus (+ \oplus +) \oplus - = \top
\]

• We lost some precision

• But this will simplify the computation of the abstract answer in cases when the precise answer is not computable
Adding Division

• Straightforward except for division by 0
 - We say that there is no answer in that case
 - $\gamma(+ \otimes 0) = \{ n \mid n = n_1 / 0 , n_1 > 0 \} = \emptyset$

• Introduce \bot to be the abstraction of the \emptyset
 - We also use the same abstraction for non-termination!
 - $\bot = \text{“nothing”}$
 - $\top = \text{“something unknown”}$

\[
\begin{array}{cccccc}
\emptyset & - & 0 & + & \top & \bot \\
- & + & 0 & - & \top & \bot \\
0 & \bot & \bot & \bot & \bot & \bot \\
+ & - & 0 & + & \top & \bot \\
\top & \top & \top & \top & \top & \bot \\
\bot & \bot & \bot & \bot & \bot & \bot \\
\end{array}
\]
The Abstract Domain

• Our abstract domain forms a lattice
• A partial order is induced by γ
 $$a_1 \leq a_2 \text{ iff } \gamma(a_1) \subseteq \gamma(a_2)$$
 - We say that a_1 is more precise than a_2!
• Every finite subset has a least-upper bound (lub) and a greatest-lower bound (glb)
Lattice Facts

• A lattice is complete when every subset has a lub and a gub
 - Even infinite subsets!

• Every finite lattice is (trivially) complete

• Every complete lattice is a complete partial order (recall: denotational semantics!)
 - Since a chain is a subset

• Not every CPO is a complete lattice
 - Might not even be a lattice
Lattice History

• **Early work** in denotational semantics used lattices (instead of what?)
 - But only chains need to have lubs
 - And there was no need for \top and glb

• In abstract interpretation we’ll use \top to denote “*I don’t know*”.
 - Corresponds to all values in the concrete domain
From One, Many

- We can start with the **abstraction function** \(\beta \):
 \[
 \beta : C \rightarrow A
 \]
 (maps a concrete value to the best abstract value)
 - A must be a lattice

- We can derive the **concretization function** \(\gamma \):
 \[
 \gamma : A \rightarrow \mathcal{P}(C)
 \]
 \[
 \gamma(a) = \{ x \in C \mid \beta(x) \leq a \}
 \]

- And the **abstraction for sets** \(\alpha \):
 \[
 \alpha : \mathcal{P}(C) \rightarrow A
 \]
 \[
 \alpha(S) = \text{lub} \{ \beta(x) \mid x \in S \}
 \]
Example

- Consider our sign lattice

\[
\beta(n) = \begin{cases}
+ & \text{if } n > 0 \\
0 & \text{if } n = 0 \\
- & \text{if } n < 0
\end{cases}
\]

- \(\alpha(S) = \text{lub } \{ \beta(x) \mid x \in S\}\)

 - Example:
 \[
 \alpha([1, 2]) = \text{lub } \{ + \} = + \\
 \alpha([1, 0]) = \text{lub } \{ +, 0 \} = \top \\
 \alpha(\emptyset) = \text{lub } \{ \} = \bot
 \]

- \(\gamma(a) = \{ n \mid \beta(n) \leq a \}\)

 - Example:
 \[
 \gamma(+) = \{ n \mid \beta(n) \leq + \} = \{ n \mid n > 0 \} \\
 \gamma(\top) = \{ n \mid \beta(n) \leq \top \} = \mathbb{Z} \\
 \gamma(\bot) = \{ n \mid \beta(n) \leq \bot \} = \emptyset
 \]
Galois Connections

• We can show that
 - γ and α are **monotonic** (with \subseteq ordering on $\mathcal{P}(C)$)
 - $\alpha (\gamma (a)) = a$ for all $a \in A$
 - $\gamma (\alpha(S)) \supseteq S$ for all $S \in \mathcal{P}(C)$

• Such a pair of functions is called a **Galois connection**
 - Between the lattices A and $\mathcal{P}(C)$
Correctness Condition

• In general, abstract interpretation satisfies the following (amazingly common) diagram:

\[
\begin{array}{c}
\text{Exp} \\
\xrightarrow{[\cdot]} \\
C \\
\xleftarrow{\epsilon} \\
\mathcal{P}(C)
\end{array}
\]

\[
\begin{array}{c}
\sigma \\
\Downarrow \\
A \\
\Downarrow \\
\gamma \\
\Downarrow \\
\alpha (\leq)
\end{array}
\]

- **means**
- **concrete domain**
- **abstract semantics**
- **abstract domain**
- **abstraction function for sets**
- **concretization function**
Three Little Correctness Conditions

- Three conditions define a correct abstract interpretation
- \(\alpha \) and \(\gamma \) are monotonic
- \(\alpha \) and \(\gamma \) form a Galois connection
 \[\Rightarrow \text{“} \alpha \text{ and } \gamma \text{ are almost inverses”} \]

4. Abstraction of operations is correct

\[a_1 \text{ op } a_2 = \alpha(\gamma(a_1) \text{ op } \gamma(a_2)) \]
Homework

- Homework 4 Due Today
- Homework 5 Out Today
- Read Ken Thompson Turing Award