Abstract Interpretation

(Galois, Collections, Widening)
Tool Time

- How’s Homework 5 going?
- Get started early
- Compilation problems?
 - See FAQ
(trivia: what tool brand is this?)
More Power!

• You can handle it!
Abstract Interpretation

• We have an abstract domain A
 - e.g., $A = \{ \text{positive, negative, zero} \}$
 - An abstraction function $\beta : \mathbb{Z} \rightarrow A$
 - \mathbb{Z} is our concrete domain
 - A concretization function $\gamma : A \rightarrow \mathcal{P}(\mathbb{Z})$

• Positive + Positive = ???
• Positive + Negative = ???
• Positive / Zero = ???
We don't want security to get suspicious ...
Review

• We introduced **abstract interpretation**
• An abstraction mapping from concrete to abstract values
 - Has a concretization mapping which forms a Galois connection
• We’ll look a bit more at Galois connections
• We’ll lift AI from expressions to programs
• ... and we’ll discuss the mythic “widening”
Why Galois Connections?

- We have an abstract domain A
 - An abstraction function $\beta : \mathbb{Z} \rightarrow A$
 - Induces $\alpha : \mathcal{P}(\mathbb{Z}) \rightarrow A$ and $\gamma : A \rightarrow \mathcal{P}(\mathbb{Z})$

- We argued that for correctness
 $$\gamma(a_1 \text{ op } a_2) \supseteq \gamma(a_1) \text{ op } \gamma(a_2)$$
 - We wish for the set on the left to be as small as possible
 - To reduce the loss of information through abstraction

- For each set $S \subseteq C$, define $\alpha(S)$ as follows:
 - Pick smallest S' that includes S and is in the image of γ
 - Define $\alpha(S) = \gamma^{-1}(S')$
 - Then we define: $a_1 \text{ op } a_2 = \alpha(\gamma(a_1) \text{ op } \gamma(a_2))$

- Then α and γ form a Galois connection
Galois Connections

- A **Galois connection** between complete lattices A and $\mathcal{P}(C)$ is a pair of functions α and γ such that:
 - γ and α are monotonic
 - (with the \subseteq ordering on $\mathcal{P}(C)$)
 - $\alpha(\gamma(a)) = a$ for all $a \in A$
 - $\gamma(\alpha(S)) \supseteq S$ for all $S \in \mathcal{P}(C)$
More on Galois Connections

- All Galois connections are monotonic
- In a Galois connection one function uniquely and absolutely determines the other
Abstract Interpretation for Imperative Programs

• So far we abstracted the value of expressions
• Now we want to abstract the state at each point in the program
• First we define the concrete semantics that we are abstracting
 - We’ll use a collecting semantics
Collecting Semantics

• Recall
 - A state $\sigma \in \Sigma$. Any state σ has type $\text{Var} \rightarrow \mathbb{Z}$
 - States vary from program point to program point

• We introduce a set of program points: labels

• We want to answer questions like:
 - Is x always positive at label i?
 - Is x always greater or equal to y at label j?

• To answer these questions we’ll construct

 $C \in \text{Contexts}$. C has type $\text{Labels} \rightarrow \mathcal{P}(\Sigma)$
 - For each label i, $C(i) = \text{all possible states at label } i$
 - This is called the collecting semantics of the program
 - This is basically what SLAM (and BLAST, ESP, ...) approximate (using BDDs to store $\mathcal{P}(\Sigma)$ efficiently)
Defining the Collecting Semantics

- We first define relations between the collecting semantics at different labels
 - We do it for unstructured CFGs (cf. HW5!)
 - Can do it for IMP with careful notion of program points

- Define a label on each edge in the CFG

For assignment

\[
C_j = \{ \sigma[x := n] \mid \sigma \in C_i \land [e]\sigma = n \}
\]
Defining the Collecting Semantics

• For conditionals

\[C_{\text{else}} = \{ \sigma \mid \sigma \in C_{\text{in}} \land \llbracket b \rrbracket \sigma = \text{false} \} \]

\[C_{\text{then}} = \{ \sigma \mid \sigma \in C_{\text{in}} \land \llbracket b \rrbracket \sigma = \text{true} \} \]

• Assumes b has no side effects (as in IMP or HW5)
Defining the Collecting Semantics

- For a join

\[C_{\text{out}} = C_i \cup C_j \]

- Verify that these relations are **monotonic**
 - If we increase a \(C_x \) all other \(C_y \) can only increase
Collecting Semantics: Example

• Assume $x \geq 0$ initially \((explain\ this?)\)

\[C_1 = \{\sigma \mid \sigma(x) \geq 0\} \]
Collecting Semantics: Example

- Assume $x \geq 0$ initially

$C_1 = \{ \sigma \mid \sigma(x) \geq 0 \}$

$C_2 = \{ \sigma[y:=1] \mid \sigma \in C_1 \}$
Collecting Semantics: Example

- Assume $x \geq 0$ initially

$C_1 = \{ \sigma \mid \sigma(x) \geq 0 \}$
$C_2 = \{ \sigma[y:=1] \mid \sigma \in C_1 \}$
$C_3 = C_2 \cap \{ \sigma \mid \sigma(x) \neq 0 \}$
Collecting Semantics: Example

• Assume $x \geq 0$ initially

\[
C_1 = \{\sigma \mid \sigma(x) \geq 0\}
\]

\[
C_2 = \{\sigma[y:=1] \mid \sigma \in C_1\}
\]

\[
C_3 = C_2 \cap \{\sigma \mid \sigma(x) \neq 0\}
\]

\[
C_4 = \{\sigma[y:=\sigma(y) \ast \sigma(x)] \mid \sigma \in C_3\}
\]
Collecting Semantics: Example

- Assume \(x \geq 0 \) initially

\[
\begin{align*}
C_1 &= \{ \sigma \mid \sigma(x) \geq 0 \} \\
C_2 &= \{ \sigma[y:=1] \mid \sigma \in C_1 \} \\
\cup \{ \sigma[x:=\sigma(x)-1] \mid \sigma \in C_4 \} \\
C_3 &= C_2 \cap \{ \sigma \mid \sigma(x) \neq 0 \} \\
C_4 &= \{ \sigma[y:=\sigma(y)\times\sigma(x)] \mid \sigma \in C_3 \}
\end{align*}
\]
Collecting Semantics: Example

- Assume $x \geq 0$ initially

$$C_1 = \{\sigma \mid \sigma(x) \geq 0\}$$
$$C_2 = \{\sigma[y:=1] \mid \sigma \in C_1\}$$
$$\cup \{\sigma[x:=\sigma(x)-1] \mid \sigma \in C_4\}$$
$$C_3 = C_2 \cap \{\sigma \mid \sigma(x) \neq 0\}$$
$$C_4 = \{\sigma[y:=\sigma(y)\cdot\sigma(x)] \mid \sigma \in C_3\}$$
$$C_5 = C_2 \cap \{\sigma \mid \sigma(x) = 0\}$$
Why Does This Work?

• We just made a system of **recursive equations** that are **defined largely in terms of themselves**
 - e.g., $C_2 = F(C_4)$, $C_4 = G(C_3)$, $C_3 = H(C_2)$

• Why do we have any reason to believe that this will get us what we want?
The Collecting Semantics

- We have an equation with the unknown C
 - The equation is defined by a \textit{monotonic} and \textit{continuous} function on domain $\text{Labels} \rightarrow \mathcal{P}(\Sigma)$

- We can use the \textbf{least fixed-point theorem}
 - Start with $C^0(\text{L}) = \emptyset$ (aka $C^0 = \lambda L.\emptyset$)
 - Apply the relations between C_i and C_j to get C^1_i from C^0_j
 - Stop when all $C^k = C^{k-1}$
 - Problem: \textbf{we’ll go on forever for most programs}
 - But we know \textbf{the fixed point exists}
Collecting Semantics: Example

• (assume $x \geq 0$ initially)

$C_1 = \{ \sigma \mid \sigma(x) \geq 0 \}$

$C_2 = \{ \sigma[y:=1] \mid \sigma \in C_1 \}$

$C_3 = C_2 \cap \{ \sigma \mid \sigma(x) \neq 0 \}$

$C_4 = \{ \sigma[y:=\sigma(y)\sigma(x)] \mid \sigma \in C_3 \}$

$C_5 = C_2 \cap \{ \sigma \mid \sigma(x) = 0 \}$
Collecting Semantics: Example

- (assume $x \geq 0$ initially)

\[
\begin{align*}
C_1 &= \{ \sigma \mid \sigma(x) \geq 0 \} \\
C_2 &= \{ \sigma[y:=1] \mid \sigma \in C_1 \} \cup \{ \sigma[x:=\sigma(x)-1] \mid \sigma \in C_4 \} \\
C_3 &= C_2 \cap \{ \sigma \mid \sigma(x) \neq 0 \} \\
C_4 &= \{ \sigma[y:=\sigma(y) \times \sigma(x)] \mid \sigma \in C_3 \} \\
C_5 &= C_2 \cap \{ \sigma \mid \sigma(x) = 0 \}
\end{align*}
\]

\[
\begin{align*}
\text{y := 1} & \quad \text{(assume $x \geq 0$ initially)} \\
x \equiv 0 & \quad \text{y := y * x} \\
x := x - 1 & \quad \text{F} \xrightarrow{\text{y := y * x}} \ 	ext{T}
\end{align*}
\]
Collecting Semantics: Example

• (assume $x \geq 0$ initially)

1. $\{x \geq 0\}$

2. $\{x \geq 0, y = 1\}$

3. $\{x_\geq 0\}$

4. $\{x_\geq 0\}$

5. $\{x_\geq 0, y = 1\}$

$C_1 = \{\sigma \mid \sigma(x) \geq 0\}$

$C_2 = \{\sigma[y:=1] \mid \sigma \in C_1\}$

$C_3 = C_2 \cap \{\sigma \mid \sigma(x) \neq 0\}$

$C_5 = C_2 \cap \{\sigma \mid \sigma(x) = 0\}$

$C_4 = \{\sigma[y:=\sigma(y)\times\sigma(x)] \mid \sigma \in C_3\}$
Collecting Semantics: Example

- (assume $x \geq 0$ initially)

$$\begin{align*}
C_1 &= \{ \sigma \mid \sigma(x) \geq 0 \} \\
C_2 &= \{ \sigma[y:=1] \mid \sigma \in C_1 \} \\
&\quad \cup \{ \sigma[x:=\sigma(x)-1] \mid \sigma \in C_4 \} \\
C_3 &= C_2 \cap \{ \sigma \mid \sigma(x) \neq 0 \} \\
C_5 &= C_2 \cap \{ \sigma \mid \sigma(x) = 0 \} \\
C_4 &= \{ \sigma[y:=\sigma(y)\cdot\sigma(x)] \mid \sigma \in C_3 \}
\end{align*}$$
Collecting Semantics: Example

• (assume $x \geq 0$ initially)

$$C_1 = \{ \sigma \mid \sigma(x) \geq 0 \}$$
$$C_2 = \{ \sigma[y:=1] \mid \sigma \in C_1 \} \cup \{ \sigma[x:=\sigma(x)-1] \mid \sigma \in C_4 \}$$
$$C_3 = C_2 \cap \{ \sigma \mid \sigma(x) \neq 0 \}$$
$$C_5 = C_2 \cap \{ \sigma \mid \sigma(x) = 0 \}$$
$$C_4 = \{ \sigma[y:=\sigma(y)\sigma(x)] \mid \sigma \in C_3 \}$$
Collecting Semantics: Example

- (assume $x \geq 0$ initially)

\[
\begin{align*}
C_1 &= \{ \sigma \mid \sigma(x) \geq 0 \} \\
C_2 &= \{ \sigma[y:=1] \mid \sigma \in C_1 \} \\
&\quad \cup \{ \sigma[x:=\sigma(x)-1] \mid \sigma \in C_4 \} \\
C_3 &= C_2 \cap \{ \sigma \mid \sigma(x) \neq 0 \} \\
C_5 &= C_2 \cap \{ \sigma \mid \sigma(x) = 0 \} \\
C_4 &= \{ \sigma[y:=\sigma(y)\sigma(x)] \mid \sigma \in C_3 \}
\end{align*}
\]
Collecting Semantics: Example

- (assume $x \geq 0$ initially)

$y := 1$

$\{x \geq 0\}$

$\{x \geq 0, y = x + 1\}$

$\{x > 0, y = 1\}$

$C_1 = \{\sigma | \sigma(x) \geq 0\}$

$C_2 = \{\sigma[y:=1] | \sigma \in C_1\}$

$C_3 = C_2 \cap \{\sigma | \sigma(x) \neq 0\}$

$C_4 = \{\sigma[y:=\sigma(y) \times \sigma(x)] | \sigma \in C_3\}$

$C_5 = C_2 \cap \{\sigma | \sigma(x) = 0\}$
Name the 1879 Gilbert & Sullivan operetta parodied by the following quote:
- *I am the very model of a Newsgroup personality.*
- *I intersperse obscenity with tedious banality.*
- *Addresses I have plenty of, both genuine and ghosted too,*
- *On all the countless newsgroups that my drivel is cross-posted to.*
Q: TV Music (040 / 842)

• Fill in the three blanks in this Flintstones theme song snippet:
 - Let's ride with the family down the street
 - Through the courtesy of blank blank blank
 - When you're with the Flintstones
 - Have a yabba dabba doo time
Abstract Interpretation

• Pick a complete lattice A (abstractions for $\mathcal{P}(\Sigma)$)
 - Along with a monotonic abstraction $\alpha : \mathcal{P}(\Sigma) \rightarrow A$
 - Alternatively, pick $\beta : \Sigma \rightarrow A$
 - This uniquely defines its Galois connection γ

• Take the relations between C_i and move them to the abstract domain:

$$a : \text{Label} \rightarrow A$$

• Assignment

Concrete: $C_j = \{\sigma[x := n] \mid \sigma \in C_i \land [e]\sigma = n\}$

Abstract: $a_j = \alpha \{\sigma[x := n] \mid \sigma \in \gamma(a_i) \land [e]\sigma = n\}$
Abstract Interpretation

- **Conditional**

 Concrete: \(C_j = \{ \sigma \mid \sigma \in C_i \land \llbracket b \rrbracket \sigma = \text{false} \} \) and
 \(C_k = \{ \sigma \mid \sigma \in C_i \land \llbracket b \rrbracket \sigma = \text{true} \} \)

 Abstract: \(a_j = \alpha \{ \sigma \mid \sigma \in \gamma(a_i) \land \llbracket b \rrbracket \sigma = \text{false} \} \) and
 \(a_k = \alpha \{ \sigma \mid \sigma \in \gamma(a_i) \land \llbracket b \rrbracket \sigma = \text{true} \} \)

- **Join**

 Concrete: \(C_k = C_i \cup C_j \)

 Abstract: \(a_k = \alpha (\gamma(a_i) \cup \gamma(a_j)) = \text{lub} \{ a_i, a_j \} \)
Least Fixed Points
In The Abstract Domain

• We have a recursive equation with unknown “a”
 - Defined by a monotonic and continuous function on the domain Labels → A

• We can use the least fixed-point theorem:
 - Start with $a^0 = \lambda L. \perp$ (aka: $a^0(L) = \perp$)
 - Apply the monotonic function to compute a^{k+1} from a^k
 - Stop when $a^{k+1} = a^k$

• Exactly the same computation as for the collecting semantics
 - What is new?
 - “There is nothing new under the sun but there are lots of old things we don't know.” - Ambrose Bierce
Least Fixed Points
In The Abstract Domain

• We have a hope of termination!
• Classic setup: A has only uninteresting chains (finite number of elements in each chain)
 - A has finite height h (= “finite-height lattice”)
• The computation takes $O(h \times |Labels|^2)$ steps
 - At each step “a” makes progress on at least one label
 - We can only make progress h times
 - And each time we must compute $|Labels|$ elements
• This is a quadratic analysis: good news
 - This is exactly the same as Kildall’s 1973 analysis of dataflow’s polynomial termination given a finite-height lattice and monotonic transfer functions.
Abstract Interpretation: Example

• Consider the following program, $x > 0$

We want to do the **sign analysis** on it.
Abstract Domain for Sign Analysis

- **Invent** the complete sign lattice
 \[S = \{ \bot, -, 0, +, \top \} \]

- **Construct** the complete lattice
 \[A = \{ x, y \} \rightarrow S \]
 - With the usual point-wise ordering
 - Abstract state gives the sign for \(x \) and \(y \)

- **We start with** \(a^0 = \lambda L. \lambda v \in \{ x, y \}. \bot \)
 - aka: \(a^0(L, v) = \bot \)
Let’s Do It!

<table>
<thead>
<tr>
<th>Label</th>
<th>Iterations →</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>T</td>
</tr>
<tr>
<td></td>
<td>T</td>
</tr>
<tr>
<td>2</td>
<td>x ⊥ +</td>
</tr>
<tr>
<td></td>
<td>T</td>
</tr>
<tr>
<td></td>
<td>T</td>
</tr>
<tr>
<td>3</td>
<td>x ⊥ +</td>
</tr>
<tr>
<td></td>
<td>T</td>
</tr>
<tr>
<td></td>
<td>T</td>
</tr>
<tr>
<td>4</td>
<td>x ⊥ +</td>
</tr>
<tr>
<td></td>
<td>T</td>
</tr>
<tr>
<td></td>
<td>T</td>
</tr>
<tr>
<td>5</td>
<td>x ⊥</td>
</tr>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>T</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Label</th>
<th>Iterations →</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>T</td>
</tr>
<tr>
<td></td>
<td>T</td>
</tr>
<tr>
<td>2</td>
<td>x ⊥ +</td>
</tr>
<tr>
<td></td>
<td>T</td>
</tr>
<tr>
<td></td>
<td>T</td>
</tr>
<tr>
<td>3</td>
<td>x ⊥ +</td>
</tr>
<tr>
<td></td>
<td>T</td>
</tr>
<tr>
<td></td>
<td>T</td>
</tr>
<tr>
<td>4</td>
<td>x ⊥ +</td>
</tr>
<tr>
<td></td>
<td>T</td>
</tr>
<tr>
<td></td>
<td>T</td>
</tr>
<tr>
<td>5</td>
<td>x ⊥</td>
</tr>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>T</td>
</tr>
</tbody>
</table>

#39
Notes, Weaknesses, Solutions

• We abstracted the state of each variable independently

\[A = \{x, y\} \rightarrow \{\bot, -, 0, +, \top\} \]

• We lost relationships between variables
 - E.g., at a point \(x\) and \(y\) may always have the same sign
 - In the previous abstraction we get \(\{x := \top, y := \top\}\) at label 2 (when in fact \(y\) is always positive!)

• We can also abstract the state as a whole

\[A = \mathcal{P}(\{\bot, -, 0, +, \top\} \times \{\bot, -, 0, +, \top\}) \]
Other Abstract Domains

• Range analysis
 - Lattice of ranges: \(R = \{ \bot, [n..m], (-\infty, m], [n, +\infty), \top \} \)
 - It is a complete lattice
 • \([n..m] \sqcup [n’..m’] = [\min(n, n’)...\max(m,m’)]\]
 • \([n..m] \sqcap [n’..m’] = [\max(n, n’)...\min(m, m’)]\]
 • With appropriate care in dealing with \(\infty \)
 - \(\beta : \mathbb{Z} \rightarrow R \) such that \(\beta(n) = [n..n] \)
 - \(\alpha : \mathcal{P}(\mathbb{Z}) \rightarrow R \) such that \(\alpha(S) = \lub \{ \beta(n) \mid n \in S \} = [\min(S)..\max(S)] \)
 - \(\gamma : R \rightarrow \mathcal{P}(\mathbb{Z}) \) such that \(\gamma(r) = \{ n \mid n \in r \} \)

• This lattice has infinite-height chains
 - So the abstract interpretation might not terminate!

Example of Non-Termination

- Consider this (common) program fragment

```
z := 1
```

We want to do range analysis on it.
Example of Non-Termination

- Consider the sequence of abstract states at point 2
 - [1..1], [1..2], [1..3], ...
 - The analysis never terminates
 - Or terminates very late if the loop bound is known statically

- It is time to approximate even more: *widening*

- We redefine the join (lub) operator of the lattice to ensure that from [1..1] upon union with [2..2] the result is [1..+\infty) and not [1..2]

- Now the sequence of states is
 - [1..1], [1, +\infty), [1, +\infty) Done (no more infinite chains)
Formal Definition of Widening
(Cousot 16.399 “Abstract Interpretation”, 2005)

• A widening $\triangledown : (P \times P) \to P$ on a poset $\langle P, \sqsubseteq \rangle$ satisfies:
 - $\forall x, y \in P \cdot x \sqsubseteq (x \triangledown y) \land y \sqsubseteq (x \triangledown y)$
 - For all increasing chains $x^0 \sqsubseteq x^1 \sqsubseteq \ldots$ the increasing chain $y^0 \overset{\text{def}}{=} x^0$, \ldots, $y^{n+1} \overset{\text{def}}{=} y^n \triangledown x^{n+1}$, \ldots is not strictly increasing.

• Two different main uses:
 - Approximate missing lubs. (Not for us.)
 - Convergence acceleration. (This is the real use.)
 - A widening operator can be used to effectively compute an upper approximation of the least fixpoint of $F \in L \triangledown L$ starting from below when L is computer-representable but does not satisfy the ascending chain condition.
Formal Widening Example

\([1,1] \triangledown [1,2] = [1, +\infty)\]

- Range Analysis on z:

L0: \(z := 1 \)
L1: while \(z < 99 \) do
L2: \(z := z + 1 \)
L3: done /* \(z \geq 99 \) */
L4:

\(x_{\text{Li}} \) def the jth iterative attempt to compute an abstract value for \(z \) at label \(\text{Li} \)

<table>
<thead>
<tr>
<th>Original (x^i)</th>
<th>Widened (y^i)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x_{01}^{L0} = \bot)</td>
<td>(y_{00}^{L0} = \bot)</td>
</tr>
<tr>
<td>(x_{01}^{L1} = [1,1])</td>
<td>(y_{01}^{L1} = [1,1])</td>
</tr>
<tr>
<td>(x_{01}^{L2} = [1,1])</td>
<td>(y_{01}^{L2} = [1,1])</td>
</tr>
<tr>
<td>(x_{00}^{L3} = [2,2])</td>
<td>(y_{00}^{L3} = [2,2])</td>
</tr>
<tr>
<td>(x_{01}^{L4} = [1,2])</td>
<td>(y_{01}^{L4} = [1, +\infty))</td>
</tr>
<tr>
<td>(x_{11}^{L3} = [2,+\infty))</td>
<td>(y_{11}^{L3} = [2,+\infty))</td>
</tr>
<tr>
<td>(x_{00}^{L4} = [99,+\infty))</td>
<td>(y_{00}^{L4} = [99,+\infty))</td>
</tr>
</tbody>
</table>

stable (fewer than 99 iterations!)

Recall \(\text{lub } S = [\min(S)\ldots\max(S)] \)
\(\text{lub } \{[2, +\infty), [1, +\infty)\} = \{[1, +\infty)\} \)
Other Abstract Domains

• Linear relationships between variables
 - A convex polyhedron is a subset of \mathbb{Z}^k whose elements satisfy a number of inequalities:
 $$a_1x_1 + a_2x_2 + \ldots + a_kx_k \geq c_i$$
 - This is a complete lattice; linear programming methods compute lubs

• Linear relationships with at most two variables
 - Convex polyhedra but with ≤ 2 variables per constraint
 - Octagons $(x \pm y \geq c)$ have efficient algorithms

• Modulus constraints (e.g. even and odd)
Abstract Chatter

- AI, Dataflow and Software Model Checking
 - The big three (aside from flow-insensitive type systems) for program analyses

- Are in fact quite related:
 - David Schmidt. *Data flow analysis is model checking of abstract interpretation*. POPL ’98.

- AI is usually flow-sensitive (per-label answer)
- AI can be path-sensitive (if your abstract domain includes \(\lor \), for example), which is just where model checking uses BDD’s
- Metal, SLAM, ESP, ... can all be viewed as AI
Abstract Interpretation
Conclusions

• AI is a very powerful technique that underlies a large number of program analyses
• AI can also be applied to functional and logic programming languages
• There are a few success stories
 - Strictness analysis for lazy functional languages
 - PolySpace for linear constraints
• In most other cases however AI is still slow
• When the lattices have infinite height and widening heuristics are used the result becomes unpredictable