(How Not To Do)
Global Optimizations
One-Slide Summary

• A **global optimization** changes an entire method (consisting of **multiple** basic blocks).
• We must be **conservative** and only apply global optimizations when they preserve the original **semantics**.
• We use **global flow analyses** to determine if it is OK to apply an optimization.
• Flow analyses are built out of simple **transfer functions** and can work **forwards** or **backwards**.
Lecture Outline

• Global flow analysis

• Global constant propagation

• Liveness analysis
Local Optimization

Recall the simple basic-block optimizations

- Constant propagation
- Dead code elimination

\[
\begin{align*}
X &:= 3 \\
Y &:= Z \times W \\
Q &:= X + Y
\end{align*}
\]

\[
\begin{align*}
X &:= 3 \\
Y &:= Z \times W \\
Q &:= 3 + Y
\end{align*}
\]
Global Optimization

These optimizations can be extended to an entire control-flow graph

\[X := 3 \]
\[B > 0 \]
\[Y := Z + W \]
\[Y := 0 \]
\[A := 2 \times X \]
Global Optimization

These optimizations can be extended to an entire control-flow graph

\[
\begin{align*}
X &:= 3 \\
B &> 0 \\
Y &:= Z + W \\
A &:= 2 \times X \\
Y &:= 0
\end{align*}
\]
Global Optimization

These optimizations can be extended to an entire control-flow graph

\[X := 3 \]
\[B > 0 \]
\[Y := Z + W \]
\[Y := 0 \]
\[A := 2 \times 3 \]
Correctness

• How do we know it is OK to globally propagate constants?
• There are situations where it is incorrect:

\[X := 3 \]
\[B > 0 \]
\[Y := Z + W \]
\[X := 4 \]
\[Y := 0 \]
\[A := 2 \times X \]
Correctness (Cont.)

To replace a use of x by a constant k we must know this correctness condition:

On every path to the use of x, the last assignment to x is $x := k$
Example 1 Revisited

\begin{align*}
X &:= 3 \\
B &> 0 \\
Y &:= Z + W \\
Y &:= 0 \\
A &:= 2 \times X
\end{align*}
Example 2 Revisited

\[X := 3 \]
\[B > 0 \]
\[Y := Z + W \]
\[X := 4 \]
\[Y := 0 \]
\[A := 2 \times X \]
Discussion

• The correctness condition is not trivial to check

• “All paths” includes paths around loops and through branches of conditionals

• Checking the condition requires global analysis
 - Global = an analysis of the entire control-flow graph for one method body
Global Analysis

Global optimization tasks share several traits:

- The optimization depends on knowing a property P at a particular point in program execution
- Proving P at any point requires knowledge of the entire method body
- Property P is typically undecidable!
Undecidability of Program Properties

- **Rice’s Theorem**: Most interesting dynamic properties of a program are undecidable:
 - Does the program halt on all (some) inputs?
 - This is called the **halting problem**
 - Is the result of a function F always positive?
 - *Assume* we can answer this question precisely
 - Take function H and find out if it halts by testing function $F(x)$
        ```c
        { H(x); return 1; }
        ```
 - *Contradition!*

- Syntactic properties are decidable!
 - e.g., How many occurrences of “x” are there?

- Programs without looping are also decidable!
Conservative Program Analyses

• So, we cannot tell for sure that “x” is always 3
 - Then, how can we apply constant propagation?

• It is OK to be conservative.
Conservative Program Analyses

• So, we cannot tell for sure that “x” is always 3
 - Then, how can we apply constant propagation?

• It is OK to be conservative. If the optimization requires P to be true, then want to know either
 - P is definitely true
 - Don’t know if P is true

• Let's call this truthiness
Conservative Program Analyses

• So, we cannot tell for sure that “x” is always 3
 - Then, how can we apply constant propagation?

• It is OK to be conservative. If the optimization requires P to be true, then want to know either
 - P is definitely true
 - Don’t know if P is true

• It is always correct to say “don’t know”
 - We try to say don’t know as rarely as possible

• All program analyses are conservative
Global Optimization: Review

\[X := 3 \]
\[B > 0 \]

\[Y := Z + W \]

\[Y := 0 \]

\[A := 2 \times X \]
Global Optimization: Review

- $X := 3$
- $B > 0$
- $Y := Z + W$
- $A := 2 \times 3$
- $X := 4$
- $Y := 0$
- $A := 2 \times X$
- $Y := 0$
- $Y := Z + W$
Global Optimization: Review

To replace a use of x by a constant k we must know that:

On every path to the use of x, the last assignment to x is $x := k$

**
Review

• The correctness condition is hard to check
• Checking it requires *global* analysis
 - An analysis of the entire control-flow graph for one method body
• We said that was impossible, right?
Global Analysis

• **Global dataflow analysis** is a standard technique for solving problems with these characteristics

• Global constant propagation is one example of an optimization that requires global dataflow analysis
Global Constant Propagation

- Global constant propagation can be performed at any point where ** holds
- Consider the case of computing ** for a single variable X at all program points
- Valid points cannot hide!
- We will find you!
 - (sometimes)
Global Constant Propagation (Cont.)

- To make the problem precise, we associate one of the following values with X at every program point:

<table>
<thead>
<tr>
<th>value</th>
<th>interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>#</td>
<td>This statement is not reachable</td>
</tr>
<tr>
<td>c</td>
<td>$X = \text{constant } c$</td>
</tr>
<tr>
<td>*</td>
<td>Don’t know if X is a constant</td>
</tr>
</tbody>
</table>
Example

Let's do it on the board!

Recall: # = not reachable, c = constant, * = don't know.
Example Answers

\[X := 3 \]
\[B > 0 \]

\[Y := Z + W \]
\[X := 4 \]

\[A := 2 \times X \]

\[X := 4 \]
\[X := 3 \]

\[X := * \]
\[X := 4 \]

\[X := * \]
\[X := 3 \]
Using the Information

• Given global constant information, it is easy to perform the optimization
 - Simply inspect the $x = ?$ associated with a statement using x
 - If x is constant at that point replace that use of x by the constant

• But how do we compute the properties $x = ?$
The Idea

The analysis of a complicated program can be expressed as a combination of simple rules relating the change in information between adjacent statements.
Explanation

• The idea is to “push” or “transfer” information from one statement to the next

• For each statement s, we compute information about the value of x immediately before and after s

$$C_{\text{in}}(x,s) = \text{value of } x \text{ before } s$$

$$C_{\text{out}}(x,s) = \text{value of } x \text{ after } s$$
Transfer Functions

• Define a transfer function that transfers information from one statement to another
Rule 1

\[C_{out}(x, s) = \# \text{ if } C_{in}(x, s) = \# \]
Rule 2

\[C_{\text{out}}(x, x := c) = c \quad \text{if } c \text{ is a constant} \]
Rule 3

\[C_{\text{out}}(x, x := f(\ldots)) = * \]
Rule 4

\[C_{\text{out}}(x, y := \ldots) = C_{\text{in}}(x, y := \ldots) \quad \text{if} \quad x \neq y \]
The Other Half

- Rules 1-4 relate the *in* of a statement to the *out* of the same statement
 - they propagate information across statements

- Now we need rules relating the *out* of one statement to the *in* of the successor statement
 - to propagate information *forward* across CFG edges

- In the following rules, let statement s have immediate predecessor statements $p_1, ..., p_n$
Rule 5

\[C_{out}(x, p_i) = * \text{ for some } i, \text{ then } C_{in}(x, s) = * \]
if $C_{out}(x, p_i) = c$ and $C_{out}(x, p_j) = d$ and $d \neq c$
then $C_{in}(x, s) = *$
Rule 7

if $C_{out}(x, p_i) = c$ or $\#$ for all i,
then $C_{in}(x, s) = c$
Rule 8

if $C_{\text{out}}(x, p_i) = \# \text{ for all } i,$
then $C_{\text{in}}(x, s) = \#$
An Algorithm

- For every entry s to the program, set $C_{in}(x, s) = $ *

- Set $C_{in}(x, s) = C_{out}(x, s) = # $ everywhere else

- Repeat until all points satisfy 1-8:
 - Pick s not satisfying 1-8 and update using the appropriate rule
The Value #

- To understand why we need #, look at a loop

```
X := 3
B > 0

Y := Z + W

A := 2 * X
A < B

Y := 0

X = *
```

```
X := 3
X = 3
X = 3
X = 3
X = 3
```
The Value #

• To understand why we need #, look at a loop

X := 3
B > 0
Y := Z + W
A := 2 * X
A < B

X = *
X = 3
Y := 0
X = 3
X = ???

X = ????
X = 3
X = ???
X = ???
The Value # (Cont.)

• Because of cycles, all points must have values at all times during the analysis.

• Intuitively, assigning some initial value allows the analysis to break cycles.

• The initial value # means “so far as we know, control never reaches this point.”
Sometimes all paths lead to the same place.

Thus you need #.
Example

We are done when all rules are satisfied!
Another Example

Let's do it on the board!
Another Example: Answer

X := 3
B > 0

Y := Z + W

Y := 0

A := 2 * X
X := 4
A < B

X = *
X = # 3

Must continue until all rules are satisfied!
Orderings

- We can simplify the presentation of the analysis by ordering the values

 \[
 \# < c < *
 \]

 Drawing a picture with “lower” values drawn lower, we get
Orderings (Cont.)

• * is the greatest value, # is the least
 - All constants are in between and incomparable

• Let \textit{lub} be the least-upper bound in this ordering

• Rules 5-8 can be written using lub:
 \[C_{\text{in}}(x, s) = \text{lub} \{ C_{\text{out}}(x, p) \mid p \text{ is a predecessor of } s \} \]
Termination

• Simply saying “repeat until nothing changes” doesn’t guarantee that eventually nothing changes

• The use of lub explains why the algorithm terminates
 - Values start as # and only increase
 - # can change to a constant, and a constant to *
 - Thus, $C_(x, s)$ can change at most twice
Number Crunching

Thus the algorithm is linear in program size:

Number of steps =
Number of C_\ldots values computed * 2 =
Number of program statements * 4
Liveness Analysis

Once constants have been globally propagated, we would like to eliminate dead code

After constant propagation, \(X := 3 \) is dead
(assuming this is the entire CFG)
Live and Dead

- The first value of \(x \) is **dead** (never used)
- The second value of \(x \) is **live** (may be used)
- Liveness is an important concept

\[
\begin{align*}
X &= 3 \\
X &= 4 \\
Y &= X
\end{align*}
\]
A variable x is live at statement s if
- There exists a statement s' that uses x
- There is a path from s to s'
- That path has no intervening assignment to x
Global Dead Code Elimination

• A statement $x := ...$ is dead code if x is dead after the assignment
• Dead code can be deleted from the program
• But we need liveness information first . . .
Computing Liveness

• We can express liveness in terms of information transferred between adjacent statements, just as in constant propagation

• Liveness is simpler than constant propagation, since it is a boolean property (true or false)
Liveness Rule 1

\[L_{in}(x, s) = true \] if \(s \) refers to \(x \) on the rhs
Liveness Rule 2

\[L_{\text{in}}(x, x := e) = \text{false} \quad \text{if } e \text{ does not refer to } x \]
Liveness Rule 3

\[L_{\text{in}}(x, s) = L_{\text{out}}(x, s) \text{ if } s \text{ does not refer to } x \]
Liveness Rule 4

$L_{out}(x, p) = \bigvee \{ L_{in}(x, s) \mid s \text{ a successor of } p \}$
Algorithm

- Let all $L(\ldots) = false$ initially

- Repeat process until all statements s satisfy rules 1-4:

 Pick s where one of 1-4 does not hold and update using the appropriate rule.
Liveness Example

\[
\begin{align*}
X &:= 3 \\
B &> 0 \\
Y &:= Z + W \\
Y &:= 0 \\
X &:= X * X \\
X &:= 4 \\
A &< B
\end{align*}
\]
Liveness Example Answers

\[
\begin{align*}
X &:= 3 \\
B &> 0 \\
Y &:= Z + W \\
Y &:= 0 \\
X &:= X \times X \\
X &:= 4 \\
A &< B \\
L(X) & = \text{false} \\
\end{align*}
\]

Dead code
Liveness Example Answers

- $X := 3$
- $B > 0$
- $Y := Z + W$
- $Y := 0$
- $X := X \times X$
- $X := 4$
- $A < B$

Also dead code?

Dead code

$L(X) = false$

$L(X) = false$
Termination

• A value can change from false to true, but not the other way around

• Each value can change only once, so termination is guaranteed

• Once the analysis is computed, it is simple to eliminate dead code
Forward vs. Backward Analysis

We’ve seen two kinds of analysis:

Constant propagation is a **forwards** analysis: information is pushed from inputs to outputs.

Liveness is a **backwards** analysis: information is pushed from outputs back towards inputs.
Analysis

- There are many other global flow analyses
- Most can be classified as either forward or backward
- Most also follow the methodology of local rules relating information between adjacent program points
Homework

• WA6 Due Tuesday
• Read chapter 7.7
 - Optional David Bacon article
• Midterm 2 - Tue Apr 15