Them's fightin' words, mister...unless 'n, o'course, them's just semantics.
Today’s Cunning Plan

• Review, Truth, and Provability
• Large-Step Opsem Commentary
• **Small-Step Contextual Semantics**
 - Reductions, Redexes, and Contexts
• Applications and Recent Research
Survey Results

++++ humor in lectures, lecture style
+++ quick presentation speed
+++ PPT presentations are lucid
++ enthusiasm
++ material is interesting / want to learn material
+ summary slides
+ random trivia
+ lecture setup: class=theory, hw/reading=practice
+ professor
+ participation is encouraged
+ candy / trivia

--- lecture is too fast / pause more
-- fix HW0/HW1 typo
-- reverse order of lectures 2 and 3
-- nothing
- more background before BLAST paper
- BLAST does not compile on Mac
- want dataflow, reachability, feasibility, alias analysis
- want more info on GCC
- CS615 should cover quals
- should throw candy more consistently
- throw chicken wings instead of candy
- do not like trivia or candy
60 Second Summary - Semantics

- A **formal semantics** is a system for assigning **meanings** to **programs**.
- For now, programs are IMP commands and expressions.
- In **operational semantics** the meaning of a program is “what it evaluates to”.
- Any opsem system gives **rules of inference** that tell you how to evaluate programs.
Summary - Judgments

• Rules of inference allow you to derive judgments ("something that is knowable") like
 \[
 \langle e, \sigma \rangle \Downarrow n
 \]
 - In state \(\sigma \), expression \(e \) evaluates to \(n \)
 \[
 \langle c, \sigma \rangle \Downarrow \sigma'
 \]
 - After evaluating command \(c \) in state \(\sigma \) the new state will be \(\sigma' \)

• State \(\sigma \) maps variables to values (\(\sigma : L \rightarrow Z \))

• Inferences equivalent up to variable renaming:
 \[
 \langle c, \sigma \rangle \Downarrow \sigma' \quad == \quad \langle c', \sigma_7 \rangle \Downarrow \sigma_8
 \]
Notation: Rules of Inference

- We express the evaluation rules as **rules of inference** for our judgment
 - called the **derivation rules** for the judgment
 - also called the **evaluation rules** (for operational semantics)

- In general, we have **one rule for each language construct**:

\[
\begin{align*}
 \langle e_1, \sigma \rangle & \Downarrow n_1 \\
 \langle e_2, \sigma \rangle & \Downarrow n_2 \\
 \langle e_1 + e_2, \sigma \rangle & \Downarrow n_1 + n_2
\end{align*}
\]

This is the only rule for \(e_1 + e_2 \)
Evaluation By Inversion

- We must find n_1 and n_2 such that $e_1 \Downarrow n_1$ and $e_2 \Downarrow n_2$ are derivable
 - This is done recursively

- If there is exactly one rule for each kind of expression we say that the rules are syntax-directed
 - At each step at most one rule applies
 - This allows a simple evaluation procedure as above (recursive tree-walk)
 - True for our Aexp but not Bexp.
Summary - Rules

• **Rules of inference** list the hypotheses necessary to arrive at a conclusion

\[
\begin{align*}
<x, \sigma> &\downarrow \sigma(x) \\
<e_1, \sigma> &\downarrow n_1 \quad <e_2, \sigma> \downarrow n_2
\end{align*}
\]

• A **derivation** involves interlocking (well-formed) instances of rules of inference

\[
\begin{align*}
<4, \sigma_3> &\downarrow 4 \quad <2, \sigma_3> \downarrow 2 \\
<4*2, \sigma_3> &\downarrow 8 \quad <6, \sigma_3> \downarrow 6
\end{align*}
\]

\[
<4*2) - 6, \sigma_3> \downarrow 2
\]
Operational Semantics
Small-Step Semantics

Sherlock saw the man using binoculars.

Sherlock saw the man using binoculars.
Provability

• Given an opsem system, \(<e, \sigma> \Downarrow n\) is **provable if there exists** a well-formed derivation with \(<e, \sigma> \Downarrow n\) as its conclusion

 - “well-formed” = “every step in the derivation is a valid instance of one of the rules of inference for this opsem system”

 - “\(\vdash <e, \sigma> \Downarrow n\)” = “it is provable that \(<e, \sigma> \Downarrow n\)”

• We would *like* truth and provability to be closely related
Truth?

- “A Vorlon said understanding is a three-edged sword. Your side, their side and the truth.”
 - Sheridan, Babylon 5, *Into The Fire*

- We will not formally define “truth” yet

- Instead we appeal to your intuition
 - $\langle 2+2, \sigma \rangle \downarrow 4$ -- *should be* true
 - $\langle 2+2, \sigma \rangle \downarrow 5$ -- *should be* false
Completeness

• A proof system (like our operational semantics) is **complete** if every true judgment is provable.

• If we **replaced** the subtract rule with:

\[
\begin{align*}
&e_1, \sigma \Downarrow n \quad e_2, \sigma \Downarrow 0 \\
&e_1 - e_2, \sigma \Downarrow n
\end{align*}
\]

• Our opsem would be **incomplete**:

\[
<4-2, \sigma \Downarrow 2 \quad \text{-- true but not provable}
\]
Consistency

• A proof system is consistent (or sound) if every provable judgment is true.
• If we replaced the subtract rule with:

\[
\begin{align*}
\langle e_1, \sigma \rangle & \Downarrow n_1 \\
\langle e_2, \sigma \rangle & \Downarrow n_2 \\
\langle e_1 - e_2, \sigma \rangle & \Downarrow n_1 + 3
\end{align*}
\]

• Our opsem would be inconsistent (or unsound):
 - \(\langle 6-1, \sigma \rangle \Downarrow 9 \) -- false but provable

“A foolish consistency is the hobgoblin of little minds, adored by little statesmen and philosophers and divines.”
-- Ralph Waldo Emerson, Essays. First Series. Self-Reliance.
Desired Traits

• Typically a system (of operational semantics) is always **complete** (unless you forget a rule)

• If you are not careful, however, your system may be **unsound**

• Usually that is **very bad**
 - A paper with an unsound type system is usually rejected
 - Papers often prove (sketch) that a system is sound
 - Recent research (e.g., Engler, ESP) into useful but unsound systems exists, however

• In this class **your work should be complete and consistent** (e.g., on homework problems)

Dr. Peter Venkman: I'm a little fuzzy on the whole "good/bad" thing here. What do you mean, "bad"?
Dr. Egon Spengler: Try to imagine all life as you know it stopping instantaneously and every molecule in your body exploding at the speed of light.
With That In Mind

- We now return to opsem for IMP

\[
\begin{align*}
\langle e, \sigma \rangle &\Downarrow n \\
\langle x := e, \sigma \rangle &\Downarrow \sigma[x := n] \\
\langle b, \sigma \rangle &\Downarrow \text{false} \\
\langle \text{while } b \text{ do } c, \sigma \rangle &\Downarrow \sigma \\
\langle b, \sigma \rangle &\Downarrow \text{true} \\
\langle c; \text{while } b \text{ do } c, \sigma \rangle &\Downarrow \sigma' \\
\langle \text{while } b \text{ do } c, \sigma \rangle &\Downarrow \sigma'
\end{align*}
\]

Def: \[\sigma[x:= n](x) = n\]
\[\sigma[x:= n](y) = \sigma(y)\]
Command Evaluation Notes

• The order of evaluation is important
 - c_1 is evaluated before c_2 in $c_1; c_2$
 - c_2 is not evaluated in “if true then c_1 else c_2”
 - c is not evaluated in “while false do c”
 - b is evaluated first in “if b then c_1 else c_2”
 - this is explicit in the evaluation rules

• Conditional constructs (e.g., $b_1 \lor b_2$) have multiple evaluation rules
 - but only one can be applied at one time
Command Evaluation Trials

- The evaluation rules are **not syntax-directed**
 - See the rules for `while`, `∧`
 - The evaluation might not terminate
- Recall: the evaluation rules suggest an interpreter
- Natural-style semantics has two big disadvantages (continued ...)
Disadvantages of Natural-Style Operational Semantics

- It is hard to talk about commands whose evaluation does not terminate
 - i.e., when there is no σ' such that $<c, \sigma> \Downarrow \sigma'$
 - But that is true also of ill-formed or erroneous commands (in a richer language)!

- It does not give us a way to talk about intermediate states
 - Thus we cannot say that on a parallel machine the execution of two commands is interleaved (= no modeling threads)
Semantics Solution

- **Small-step semantics** addresses these problems
 - Execution is modeled as a (possible infinite) sequence of states

- Not quite as easy as large-step natural semantics, though

- **Contextual semantics** is a small-step semantics where the atomic execution step is a **rewrite** of the program
Contextual Semantics

- We will define a relation \(\langle c, \sigma \rangle \to \langle c', \sigma' \rangle \)
 - \(c' \) is obtained from \(c \) via an atomic rewrite step
 - Evaluation terminates when the program has been rewritten to a terminal program
 - one from which we cannot make further progress
 - For IMP the terminal command is “skip”
 - As long as the command is not “skip” we can make further progress
 - some commands never reduce to skip (e.g., “while true do skip”)
Contextual Derivations

- In small-step contextual semantics, derivations are not tree-structured.
- A contextual semantics derivation is a sequence (or list) of atomic rewrites:

\[
<x+(7-3), \sigma> \rightarrow <x+(4), \sigma> \rightarrow <5+4, \sigma> \rightarrow <9, \sigma>
\]

\[\sigma(x) = 5\]
What is an Atomic Reduction?

- What is an atomic reduction step?
 - Granularity is a choice of the semantics designer

- How to select the next reduction step, when several are possible?
 - This is the order of evaluation issue
This 1986 James Cameron science fiction movie also starring Bill Paxton features lines such as "It's a bughunt", "I may be synthetic, but I'm not stupid", and "Oh, Game Over man, Game Over!"
4. Lizzy drank in the sight of him like a thirst craven man consumes water.

421. "I go here, silly," said Kimi with a proud expression. "And how I might ask? Your scores were not legible for this school."

312. Every member of the Thespians, or anyone who has ever acted in one of our school plays was a pre-Madonna, mellow-dramatic; over-actor and I didn't want to be one of them.

198. Nobody goes into Donovan's Layer, For they sence evil. But Livvy doesn't she see's something no one else does.
This Egyptian-born United Nations Secretary-General served from 1992 to 1996. He was criticized for, among other things, failing to act during the 1994 Rwandan genocides and during the continuing Angolan civil war.
Redexes

- A **redex** is a syntactic expression or command that can be reduced (transformed) in one atomic step.
- Redexes are defined via a grammar:

 $$r ::= x \quad (x \in L)$$
 $$| \ n_1 + n_2$$
 $$| \ x := n$$
 $$| \ \text{skip}; \ c$$
 $$| \ \text{if true then } c_1 \ \text{else } c_2$$
 $$| \ \text{if false then } c_1 \ \text{else } c_2$$
 $$| \ \text{while } b \ \text{do } c$$
- For brevity, we mix exp and command redexes.
- Note that \((1 + 3) + 2\) is not a redex, but \(1 + 3\) is.
Local Reduction Rules for IMP

- One for each redex: \(<r, \sigma> \rightarrow <e, \sigma'>\)
 - means that in state \(\sigma\), the redex \(r\) can be replaced in one step with the expression \(e\)

\(<x, \sigma> \rightarrow <\sigma(x), \sigma>\)

\(<n_1 + n_2, \sigma> \rightarrow <n, \sigma>\)

where \(n = n_1 + n_2\)

\(<n_1 = n_2, \sigma> \rightarrow <\text{true}, \sigma>\)

if \(n_1 = n_2\)

\(<x := n, \sigma> \rightarrow <\text{skip}, \sigma[x := n]>\)

\(<\text{skip}; c, \sigma> \rightarrow <c, \sigma>\)

\(<\text{if true then } c_1 \text{ else } c_2, \sigma> \rightarrow <c_1, \sigma>\)

\(<\text{if false then } c_1 \text{ else } c_2, \sigma> \rightarrow <c_2, \sigma>\)

\(<\text{while } b \text{ do } c, \sigma> \rightarrow <\text{if } b \text{ then } c; \text{ while } b \text{ do } c \text{ else } \text{skip}, \sigma>\)
The Global Reduction Rule

• General idea of contextual semantics
 - Decompose the current expression into the redex-to-reduce-next and the remaining program
 • The remaining program is called a context
 - Reduce the redex “r” to some other expression “e”
 - The resulting (reduced) expression consists of “e” with the original context

Not happy? I’ll explain with pictures soon!
As A Picture (1)

(Context)
...
\[x := 2 + 2; \]
print \(x \)

Step 1: Find The Redex
As A Picture (2)

(Context)
...

\[x := 2+2 \text{ (redex)} ; \]

print x

Step 1: Find The Redex

Step 2: Reduce The Redex
As A Picture (3)

(Context)
...

\[
x := 2 + 2 \ (\text{redex})
\]
\[
\text{print } x
\]

(4 (reduced))

Step 1: Find The Redex
Step 2: Reduce The Redex
As A Picture (4)

(Context)
...

x := 4 ;
print x

Step 1: Find The Redex
Step 2: Reduce The Redex
Step 3: Replace It In The Context
Contextual Analysis

• We use H to range over contexts
• We write $H[r]$ for the expression obtained by placing redex r in context H
• Now we can define a small step

If $<r, \sigma> \rightarrow <e, \sigma'>$ then $<H[r], \sigma> \rightarrow <H[e], \sigma'>$
Contexts

- A **context** is like an expression (or command) with a marker • in the place where the **redex** goes.

- **Examples:**
 - To evaluate “(1 + 3) + 2” we use the redex 1 + 3 and the context “• + 2”
 - To evaluate “if x > 2 then c₁ else c₂” we use the redex x and the context “if • > 2 then c₁ else c₂”
Context Terminology

• A context is also called an “expression with a hole”
• The marker • is sometimes called a hole
• H[r] is the expression obtained from H by replacing • with the redex r

“Avoid context and specifics; generalize and keep repeating the generalization.”
-- Jack Schwartz
Contextual Semantics Example

- \(x := 1 \); \(x := x + 1 \) with initial state \([x:=0]\)

<table>
<thead>
<tr>
<th><Comm, State></th>
<th>Redex •</th>
<th>Context</th>
</tr>
</thead>
<tbody>
<tr>
<td><(x := 1; x := x+1, [x := 0])></td>
<td>(x := 1)</td>
<td>•; (x := x+1)</td>
</tr>
<tr>
<td><(\text{skip}; x := x+1, [x := 1])></td>
<td>(\text{skip}; x := x+1)</td>
<td>•</td>
</tr>
<tr>
<td><(x := x+1, [x := 1])></td>
<td>(x)</td>
<td>(x := • + 1)</td>
</tr>
</tbody>
</table>

What happens next?
Contextual Semantics Example

- \(\mathbf{x} := 1 \); \(\mathbf{x} := \mathbf{x} + 1 \) with initial state \([\mathbf{x} := 0]\)

<table>
<thead>
<tr>
<th><Comm, State></th>
<th>Redex *</th>
<th>Context</th>
</tr>
</thead>
<tbody>
<tr>
<td>(<\mathbf{x} := 1; \mathbf{x} := \mathbf{x} + 1, [\mathbf{x} := 0])></td>
<td>(\mathbf{x} := 1)</td>
<td>(*; \mathbf{x} := \mathbf{x} + 1)</td>
</tr>
<tr>
<td>(<\text{skip}; \mathbf{x} := \mathbf{x} + 1, [\mathbf{x} := 1])></td>
<td>(\text{skip}; \mathbf{x} := \mathbf{x} + 1)</td>
<td>(*)</td>
</tr>
<tr>
<td>(<\mathbf{x} := \mathbf{x} + 1, [\mathbf{x} := 1])></td>
<td>(\mathbf{x})</td>
<td>(\mathbf{x} := * + 1)</td>
</tr>
<tr>
<td>(<\mathbf{x} := 1 + 1, [\mathbf{x} := 1])></td>
<td>(1 + 1)</td>
<td>(\mathbf{x} := *)</td>
</tr>
<tr>
<td>(<\mathbf{x} := 2, [\mathbf{x} := 1])></td>
<td>(\mathbf{x} := 2)</td>
<td>(*)</td>
</tr>
<tr>
<td>(<\text{skip}, [\mathbf{x} := 2])></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
More On Contexts

• **Contexts** are defined by a grammar:

\[H ::= \bullet \mid n + H \]
\[\mid H + e \]
\[\mid x := H \]
\[\mid \text{if } H \text{ then } c_1 \text{ else } c_2 \]
\[\mid H; c \]

• A context has **exactly one** \(\bullet \) marker
• A redex is never a value
What’s In A Context?

- Contexts specify precisely how to find the next redex
 - Consider $e_1 + e_2$ and its decomposition as $H[r]$
 - If e_1 is n_1 and e_2 is n_2 then $H = \bullet$ and $r = n_1 + n_2$
 - If e_1 is n_1 and e_2 is not n_2 then $H = n_1 + H_2$ and $e_2 = H_2[r]$
 - If e_1 is not n_4 then $H = H_1 + e_2$ and $e_1 = H_1[r]$
 - In the last two cases the decomposition is done recursively
 - Check that in each case the solution is unique
Unique Next Redex: Proof By Handwaving Examples

• e.g. \(\text{c} = \text{“c}_1; \text{c}_2 \)” - either
 - \(c_1 = \text{skip} \) and then \(c = H[\text{skip}; c_2] \) with \(H = \bullet \)
 - or \(c_1 \neq \text{skip} \) and then \(c_1 = H[r] \); so \(c = H’[r] \) with \(H’ = H; c_2 \)

• e.g. \(\text{c} = \text{“if } b \text{ then } c_1 \text{ else } c_2 \)”
 - either \(b = \text{true} \) or \(b = \text{false} \) and then \(c = H[r] \) with \(H = \bullet \)
 - or \(b \) is not a value and \(b = H[r] \); so \(c = H’[r] \) with \(H’ = \text{if } H \text{ then } c_1 \text{ else } c_2 \)
Context Decomposition

• Decomposition theorem:
 If c is not “skip” then there exist unique H and r such that c is $H[r]

 - “Exist” means progress
 - “Unique” means determinism
Short-Circuit Evaluation

• What if we want to express short-circuit evaluation of \land?
 - Define the following contexts, redexes and local reduction rules
 $H ::= \ldots \mid H \land b_2$
 $r ::= \ldots \mid \text{true} \land b \mid \text{false} \land b$
 $<\text{true} \land b, \sigma> \rightarrow <b, \sigma>$
 $<\text{false} \land b, \sigma> \rightarrow <\text{false}, \sigma>$
 - the local reduction kicks in before b_2 is evaluated
Contextual Semantics Summary

- Can view \bullet as representing the program counter
- The advancement rules for \bullet are non-trivial
 - At each step the entire command is decomposed
 - This makes contextual semantics inefficient to implement directly

- The major advantage of contextual semantics: it allows a mix of local and global reduction rules
 - For IMP we have only local reduction rules: only the redex is reduced
 - Sometimes it is useful to work on the context too
 - We’ll do that when we study memory allocation, etc.
Reading **Real-World Examples**

- Cobbe and Felleisen, POPL 2005
- Small-step contextual opsem for Java
- Their rule for object field access:

 \[P \vdash \langle E[obj.fd], S \rangle \leftrightarrow \langle E[F(fd)], S \rangle \]
 \[\text{where } F = fields(S(obj)) \text{ and } fd \in \text{dom}(F) \]

 \[P \vdash \langle E[obj.fd], S \rangle \rightarrow \langle E[F(fd)], S \rangle \]
 - where \(F = fields(S(obj)) \text{ and } fd \in \text{dom}(F) \)

- They use “E” for context, we use “H”
- They use “S” for state, we use “σ”
Lost In Translation

- \(P \vdash <H[obj.fd],\sigma> \rightarrow <H[F(fd)],\sigma> \)
 - Where \(F=\text{fields}(\sigma(obj)) \) and \(fd \in \text{dom}(F) \)

- They have “\(P \vdash \)”, but that just means “it can be proved in our system given \(P \)”

- \(<H[obj.fd],\sigma> \rightarrow <H[F(fd)],\sigma> \)
 - Where \(F=\text{fields}(\sigma(obj)) \) and \(fd \in \text{dom}(F) \)
Lost In Translation 2

- $<\text{H[obj.fd]},\sigma> \rightarrow <\text{H[F(fd)]},\sigma>$
 - Where $F=\text{fields}(\sigma(\text{obj}))$ and $fd \in \text{dom}(F)$

- They model objects (like obj), but we do not (yet) - let’s just make fd a variable:

- $<\text{H[fd]},\sigma> \rightarrow <\text{H[F(fd)]},\sigma>$
 - Where $F=\sigma$ and $fd \in L$

- Which is just our variable-lookup rule:

- $<\text{H[fd]},\sigma> \rightarrow <\text{H[\sigma(fd)]},\sigma>$ (when $fd \in L$)
“Sleep On It”

“The Semantics Pillow”

1. \[e_0 \rightarrow e_0' \]
 \[e_0 + e_1 \rightarrow e_0' + e_1 \]

2. \[e_1 \rightarrow e_1' \]
 \[m_0 + e_1 \rightarrow m_0 + e_1' \]

3. \[m_0 + m_1 \rightarrow m_2 \]

“Learn while you sleep!”

Only $19.95
Homework

- Homework 1 Due Thursday
- Read Winskel Chapter 3
- Want an extra opsem review?
 - *Natural deduction* article
 - Plotkin Chapter 2
- Optional Philosophy of Science article