Proof Techniques for Operational Semantics
Small-Step Contextual Semantics

- In small-step contextual semantics, derivations are not tree-structured
- A **contextual semantics derivation** is a sequence (or list) of atomic rewrites:
 \[
 <x+(7-3), \sigma> \rightarrow <x+(4), \sigma> \rightarrow <5+4, \sigma> \rightarrow <9, \sigma>
 \]

If \(<r, \sigma> \rightarrow <e, \sigma'> \) then \(<H[r], \sigma> \rightarrow <H[e], \sigma'> \)

- \(\sigma(x)=5 \)
- \(r = \text{redex} \)
- \(H = \text{context (has hole)} \)
Context Decomposition

• Decomposition theorem:

 If c is not “skip” then there exist unique H and r such that c is $H[r]$

 - “Exist” means progress
 - “Unique” means determinism
Short-Circuit Evaluation

- What if we want to express short-circuit evaluation of \land ?
 - Define the following contexts, redexes and local reduction rules

 $H ::= \ldots \mid H \land b_2$

 $r ::= \ldots \mid \text{true} \land b \mid \text{false} \land b$

 $<\text{true} \land b, \sigma> \rightarrow <b, \sigma>$

 $<\text{false} \land b, \sigma> \rightarrow <\text{false}, \sigma>$

 - the local reduction kicks in before b_2 is evaluated
Contextual Semantics Summary

• Can view as representing the program counter
• Contextual semantics is inefficient to implement directly

• The major advantage of contextual semantics: it allows a mix of local and global reduction rules
 - For IMP we have only local reduction rules: only the redex is reduced
 - Sometimes it is useful to work on the context too
 - We’ll do that when we study memory allocation, etc.
Cunning Plan for Proof Techniques

• Why Bother?
• Mathematical Induction
• Well-Founded Induction
• Structural Induction
 - “Induction On The Structure Of The Derivation”
One-Slide Summary

- **Mathematical Induction** is a proof technique: If you can prove $P(0)$ and you can prove that $P(n)$ implies $P(n+1)$, then you can conclude that for all natural numbers n, $P(n)$ holds.

- Induction works because the natural numbers are well-founded: there are no infinite descending chains $n > n-1 > n-2 > \ldots > \ldots$.

- **Structural induction** is induction on a formal structure, like an AST. The base cases use the leaves, the inductive steps use the inner nodes.

- **Induction on a derivation** is structural induction applied to a derivation D (e.g., $D: :: <c, \sigma> \Downarrow \sigma'$).
Why Bother?

• I am loathe to teach you anything that I think is a waste of your time.

• Thus I must convince you that inductive opsem proof techniques are useful.
 - Recall class goals: understand PL research techniques and apply them to your research

• This motivation should also highlight where you might use such techniques in your own research.
Never Underestimate

“Any counter-example posed by the Reviewers against this proof would be a useless gesture, no matter what technical data they have obtained. **Structural Induction is now the ultimate proof technique in the universe. I suggest we use it.**” --- Admiral Motti, *A New Hope*
Classic Example (Schema)

- "A well-typed program cannot go wrong."
 - Robin Milner

- When you design a new type system, you must show that it is safe (= that the type system is sound with respect to the operational semantics).

 - Type preservation: “if you have a well-typed program and apply an opsem rule, the result is well-typed.”
 - Progress: “a well-typed program will never get stuck in a state with no applicable opsem rules”

- Done for real languages: SML/NJ, SPARK ADA, Java
 - PL/I, plus basically every toy PL research language ever.
Classic Examples

• CCured Project (Berkeley)
 - A program that is instrumented with CCured run-time checks (= “adheres to the CCured type system”) will not segfault (= “the x86 opsem rules will never get stuck”).

• Vault Language (Microsoft Research)
 - A well-typed Vault program does not leak any tracked resources and invokes tracked APIs correctly (e.g., handles IRQL correctly in asynchronous Windows device drivers, cf. Capability Calculus)

• RC - Reference-Counted Regions For C (Intel Research)
 - A well-typed RC program gains the speed and convenience of region-based memory management but need never worry about freeing a region too early (run-time checks).

• Typed Assembly Language (Cornell)
 - Reasonable C programs (e.g., device drivers) can be translated to TALx86. Well-typed TALx86 programs are type- and memory-safe.

• Secure Information Flow (Many, e.g., Volpano et al. ‘96)
 - Lattice model of secure flow analysis is phrased as a type system, so type soundness = noninterference.
Recent Examples

- “The proof proceeds by rule induction over the target term producing translation rules.”
 - Chakravarty et al. ’05

- “Type preservation can be proved by standard induction on the derivation of the evaluation relation.”
 - Hosoya et al. ’05

- “Proof: By induction on the derivation of $N \downarrow W$."
 - Sumi and Pierce ’05

- Method: chose four POPL 2005 papers at random, the three above mentioned structural induction.
 (emphasis mine)
Induction

- **Most important technique** for studying the formal semantics of prog languages
 - If you want to perform or understand PL research, you must grok this!

- Mathematical Induction (simple)
- Well-Founded Induction (general)
- **Structural Induction** (widely used in PL)
Mathematical Induction

- **Goal:** prove $\forall n \in \mathbb{N}. P(n)$

- **Base Case:** prove $P(0)$

- **Inductive Step:**
 - Prove $\forall n > 0. P(n) \Rightarrow P(n+1)$
 - “Pick arbitrary n, assume $P(n)$, prove $P(n+1)$”

- Why does induction work?
Why Does It Work?

- There are no infinite descending chains of natural numbers.
- For any n, $P(n)$ can be obtained by starting from the base case and applying n instances of the inductive step.
Well-Founded Induction

- A relation $\leq \subseteq A \times A$ is well-founded if there are no infinite descending chains in A.

 - Example: $<_1 = \{ (x, x + 1) \mid x \in \mathbb{N} \}$
 - aka the predecessor relation

 - Example: $< = \{ (x, y) \mid x, y \in \mathbb{N} \text{ and } x < y \}$

- **Well-founded induction:**

 - To prove $\forall x \in A. \ P(x)$ it is enough to prove $\forall x \in A. [\forall y \leq x \Rightarrow P(y)] \Rightarrow P(x)$

- If \leq is $<_1$ then we obtain mathematical induction as a special case.
Structural Induction

- Recall $e ::= n \mid e_1 + e_2 \mid e_1 * e_2 \mid x$

- Define $\leq \subseteq \text{Aexp} \times \text{Aexp}$ such that

 \begin{align*}
 e_1 & \leq e_1 + e_2 & e_2 & \leq e_1 + e_2 \\
 e_1 & \leq e_1 * e_2 & e_2 & \leq e_1 * e_2
 \end{align*}

- no other elements of $\text{Aexp} \times \text{Aexp}$ are related by \leq

- **To prove** $\forall e \in \text{Aexp}. \ P(e)$

 - $\vdash \forall n \in \mathbb{Z}. \ P(n)$

 - $\vdash \forall x \in \mathcal{L}. \ P(x)$

 - $\vdash \forall e_1, e_2 \in \text{Aexp}. \ P(e_1) \land P(e_2) \Rightarrow P(e_1 + e_2)$

 - $\vdash \forall e_1, e_2 \in \text{Aexp}. \ P(e_1) \land P(e_2) \Rightarrow P(e_1 * e_2)$
Notes on Structural Induction

• Called **structural induction** because the proof is guided by the **structure** of the expression

• One proof case per form of expression
 - Atomic expressions (with no subexpressions) are all **base cases**
 - Composite expressions are the **inductive case**

• This is the **most useful form of induction** in the study of PL
Example of Induction on Structure of Expressions

• Let
 - \(L(e) \) be the # of literals and variable occurrences in \(e \)
 - \(O(e) \) be the # of operators in \(e \)

• Prove that \(\forall e \in Aexp. \ L(e) = O(e) + 1 \)

• Proof: by induction on the structure of \(e \)
 - Case \(e = n \). \(L(e) = 1 \) and \(O(e) = 0 \)
 - Case \(e = x \). \(L(e) = 1 \) and \(O(e) = 0 \)
 - Case \(e = e_1 + e_2 \).
 - \(L(e) = L(e_1) + L(e_2) \) and \(O(e) = O(e_1) + O(e_2) + 1 \)
 - By induction hypothesis \(L(e_1) = O(e_1) + 1 \) and \(L(e_2) = O(e_2) + 1 \)
 - Thus \(L(e) = O(e_1) + O(e_2) + 2 = O(e) + 1 \)
 - Case \(e = e_1 * e_2 \). Same as the case for +
Other Proofs by Structural Induction on Expressions

• Most proofs for Aexp sublanguage of IMP
• Small-step and natural semantics obtain equivalent results:
 \[\forall e \in \text{Exp. } \forall n \in \mathbb{N}. \ e \rightarrow^* n \iff e \downarrow n \]

• Structural induction on expressions works here because all of the semantics are syntax directed
Stating The Obvious (With a Sense of Discovery)

• You are given a concrete state σ.
• You have $\vdash <x + 1, \sigma> \Downarrow 5$
• You also have $\vdash <x + 1, \sigma> \Downarrow 88$
• Is this possible?
Why That Is Not Possible

• Prove that IMP is **deterministic**
 \[
 \forall e \in \text{Aexp}. \ \forall \sigma \in \Sigma. \ \forall n, n' \in \mathbb{N}. \ <e, \sigma> \downarrow n \land <e, \sigma> \downarrow n' \Rightarrow n = n' \\
 \forall b \in \text{Bexp}. \ \forall \sigma \in \Sigma. \ \forall t, t' \in \mathbb{B}. \ <b, \sigma> \downarrow t \land <b, \sigma> \downarrow t' \Rightarrow t = t' \\
 \forall c \in \text{Comm.} \ \forall \sigma, \sigma', \sigma'' \in \Sigma. \ <c, \sigma> \downarrow \sigma' \land <c, \sigma> \downarrow \sigma'' \Rightarrow \sigma' = \sigma''
 \]

• No immediate way to use **mathematical** induction

• For commands we cannot use induction on the **structure of the command**
 – while’s evaluation does **not** depend only on the evaluation of its strict subexpressions

 \[
 <b, \sigma> \downarrow \text{true} \quad <c, \sigma> \downarrow \sigma' \quad <\text{while } b \text{ do } c, \sigma> \downarrow \sigma''
 \]

 \[
 <\text{while } b \text{ do } c, \sigma> \downarrow \sigma''
 \]
Q: Music (141 / 842)

• Give the next line in 3 of the following 5 song lyrics:
 - "Almost heaven / West Virginia"
 - "Bye bye love / Bye bye bye happiness"
 - "Casey would waltz with a strawberry blonde"
 - "Cecilia, you're breaking my heart"
 - "Do - a deer, a female deer"
Q: Movies (292 / 842)

• From the 1981 movie Raiders of the Lost Ark, give either the protagonist's phobia or composer of the musical score.
Q: Games (495 / 842)

• Name the 1969 Parker Brothers foam plastic material used in child-safe toys.
Recall Opsem

- **Operational semantics** assigns meanings to programs by listing **rules of inference** that allow you to prove **judgments** by making **derivations**.

- A **derivation** is a tree-structured object made up of valid instances of inference rules.
We Need Something New

• Some **more powerful** form of induction ...
• With all the bells and whistles!
Induction on the Structure of Derivations

- Key idea: The hypothesis does not just assume a $c \in \text{Comm}$ but the existence of a derivation of $<c, \sigma> \Downarrow \sigma'$
- Derivation trees are also defined inductively, just like expression trees
- A derivation is built of *subderivations*:

\[
\begin{align*}
<x, \sigma_{i+1}> & \Downarrow 5 - i & \quad 5 - i \leq 5 \\
<x + 1, \sigma_{i+1}> & \Downarrow 6 - i \\
<x := x + 1, \sigma_{i+1}> & \Downarrow \sigma_i \\
<W, \sigma_i> & \Downarrow \sigma_0 \\
<x := x + 1; W, \sigma_{i+1}> & \Downarrow \sigma_0 \\
\text{while } x \leq 5 \text{ do } x := x + 1, \sigma_{i+1}> & \Downarrow \sigma_0
\end{align*}
\]

- Adapt the structural induction principle to work on the structure of derivations
Induction on Derivations

- To prove that for all derivations D of a judgment, property P holds

- For each derivation rule of the form

 \[
 H_1 \ldots H_n \quad \underline{C}
 \]

 - Assume P holds for derivations of \(H_i \) (i = 1..n)
 - Prove the the property holds for the derivation obtained from the derivations of \(H_i \) using the given rule
New Notation

• Write $D :: \text{Judgment}$ to mean “D is the derivation that proves Judgment”

• Example:

$D :: <x+1, \sigma> \downarrow 2$
Induction on Derivations (2)

- Prove that evaluation of commands is deterministic:
 \[<c, \sigma> \Downarrow \sigma' \Rightarrow \forall \sigma'' \in \Sigma. <c, \sigma> \Downarrow \sigma'' \Rightarrow \sigma' = \sigma'' \]

- Pick arbitrary \(c, \sigma, \sigma' \) and \(D :: <c, \sigma> \Downarrow \sigma' \)

- To prove: \(\forall \sigma'' \in \Sigma. <c, \sigma> \Downarrow \sigma'' \Rightarrow \sigma' = \sigma'' \)
 - Proof: by induction on the structure of the derivation \(D \)

- Case: last rule used in \(D \) was the one for skip
 \[
 D :: \quad \quad \quad \quad \quad \quad \quad \quad \quad \\
 \quad \quad \quad \quad \downarrow \quad \sigma
 \]
 - This means that \(c = \text{skip} \), and \(\sigma' = \sigma \)
 - By inversion \(<c, \sigma> \Downarrow \sigma'' \) uses the rule for \text{skip}
 - Thus \(\sigma'' = \sigma \)
 - This is a base case in the induction
Induction on Derivations (3)

- Case: the last rule used in D was the one for sequencing

$$
\begin{align*}
D &::\quad D_1 :: <c_1, \sigma> \Downarrow \sigma_1 \quad D_2 :: <c_2, \sigma_1> \Downarrow \sigma' \\
\text{\quad} &\quad \quad \quad \quad \quad \quad <c_1; c_2, \sigma> \Downarrow \sigma'
\end{align*}
$$

- Pick arbitrary σ''' such that $D''' :: <c_1; c_2, \sigma> \Downarrow \sigma'''$.
 - by inversion D''' uses the rule for sequencing
 - and has subderivations $D''''_1 :: <c_1, \sigma> \Downarrow \sigma''''_1$ and $D''''_2 :: <c_2, \sigma''''_1> \Downarrow \sigma''''$

- By induction hypothesis on D_1 (with D''''_1): $\sigma_1 = \sigma''''_1$
 - Now $D''''_2 :: <c_2, \sigma_1> \Downarrow \sigma''''$

- By induction hypothesis on D_2 (with D''''_2): $\sigma''' = \sigma'$
- This is a simple inductive case
Induction on Derivations (4)

• Case: the last rule used in D was $\textbf{while true}$

$$D ::= \frac{D_1 ::= <b, \sigma> \Downarrow \text{true} \quad D_2 ::= <c, \sigma> \Downarrow \sigma_1 \quad D_3 ::= \text{while b do c, } \sigma_1 > \Downarrow \sigma'}{<\text{while b do c, } \sigma> \Downarrow \sigma'}$$

• Pick arbitrary σ'' such that $D'' ::= <\text{while b do c, } \sigma> \Downarrow \sigma''$
 - by inversion and determinism of boolean expressions, D'' also uses the rule for while true
 - and has subderivations $D''_2 ::= <c, \sigma> \Downarrow \sigma''_1$ and $D''_3 ::= <W, \sigma''_1 > \Downarrow \sigma''$

• By induction hypothesis on D_2 (with D''_2): $\sigma_1 = \sigma''_1$
 - Now $D''_3 ::= <\text{while b do c, } \sigma_1 > \Downarrow \sigma''$

• By induction hypothesis on D_3 (with D''_3): $\sigma'' = \sigma'$
What Do You,
The Viewers At Home, Think?

• Let’s do \textit{if true} together!
• Case: the last rule in D was \textit{if true}

\[D :: \frac{D_1 :: \langle b, \sigma \rangle \downarrow \text{true} \quad D_2 :: \langle c1, \sigma \rangle \downarrow \sigma_1}{\langle \text{if b do c1 else c2}, \sigma \rangle \downarrow \sigma_1} \]

• Try to do this on a piece of paper. In a few minutes I’ll have some lucky winners come on down.
Induction on Derivations (5)

- Case: the last rule in D was **if true**

\[
\begin{array}{c}
D :: \\
D_1 :: \langle b, \sigma \rangle \downarrow \text{true} & D_2 :: \langle c_1, \sigma \rangle \downarrow \sigma' \\
\hline
\langle \text{if } b \text{ do } c_1 \text{ else } c_2, \sigma \rangle \downarrow \sigma'
\end{array}
\]

- Pick arbitrary \(\sigma'' \) such that

\[
D'' :: \langle \text{if } b \text{ do } c_1 \text{ else } c_2, \sigma \rangle \downarrow \sigma''
\]

 - By **inversion and determinism**, \(D'' \) also uses **if true**
 - And has subderivations \(D''_1 :: \langle b, \sigma \rangle \downarrow \text{true} \) and
 \(D''_2 :: \langle c_1, \sigma \rangle \downarrow \sigma'' \)

- By induction hypothesis on \(D_2 \) (with \(D''_2 \)): \(\sigma' = \sigma'' \)
Induction on Derivations

Summary

• If you must prove $\forall x \in A. \ P(x) \Rightarrow Q(x)$
 - with A inductively defined and $P(x)$ rule-defined
 - we pick arbitrary $x \in A$ and $D :: P(x)$
 - we could do induction on both facts
 • $x \in A$ leads to induction on the structure of x
 • $D :: P(x)$ leads to induction on the structure of D
 - Generally, the induction on the structure of the derivation is more powerful and a safer bet

• Sometimes there are many choices for induction
 - choosing the right one is a trial-and-error process
 - a bit of practice can help a lot
Equivalence

- Two expressions (commands) are equivalent if they yield the same result from all states.

\[e_1 \approx e_2 \iff \forall \sigma \in \Sigma. \forall n \in \mathbb{N}. \quad <e_1, \sigma> \Downarrow n \iff <e_2, \sigma> \Downarrow n \]

and for commands

\[c_1 \approx c_2 \iff \forall \sigma, \sigma' \in \Sigma. \quad <c_1, \sigma> \Downarrow \sigma' \iff <c_2, \sigma> \Downarrow \sigma' \]
Notes on Equivalence

• Equivalence is like logical validity
 - It must hold in all states (= all valuations)
 - $2 \approx 1 + 1$ is like “$2 = 1 + 1$ is valid”
 - $2 \approx 1 + x$ might or might not hold.
 - So, 2 is not equivalent to $1 + x$

• Equivalence (for IMP) is **undecidable**
 - If it were decidable we could solve the halting problem for IMP. *How?*

• Equivalence justifies code transformations
 - compiler optimizations
 - code instrumentation
 - abstract modeling

• **Semantics** is the basis for proving equivalence
Equivalence Examples

• skip; c ≈ c
• while b do c ≈ if b then c; while b do c else skip
• If e₁ ≈ e₂ then x := e₁ ≈ x := e₂
• while true do skip ≈ while true do x := x + 1
• Let c be
 while x ≠ y do
 if x ≥ y then x := x - y else y := y - x
then
(x := 221; y := 527; c) ≈ (x := 17; y := 17)
Potential Equivalence

• \((x := e_1; x := e_2) \approx x := e_2\)

• Is this a valid equivalence?
Not An Equivalence

- \((x := e_1; x := e_2) \not\sim x := e_2\)
- lie. Chigau yo. Dame desu!
- Not a valid equivalence for all \(e_1, e_2\).
- Consider:
 - \((x := x+1; x := x+2) \not\sim x := x+2\)
- But for \(n_1, n_2\) it’s fine:
 - \((x := n_1; x := n_2) \approx x := n_2\)
Proving An Equivalence

• Prove that “skip; c ≈ c” for all c
• Assume that D :: \langle \text{skip; } c, \sigma \rangle \downarrow \sigma’
• By **inversion** (twice) we have that

\[
D :: \frac{\langle \text{skip}, \sigma \rangle \downarrow \sigma \quad D_1 :: \langle c, \sigma \rangle \downarrow \sigma'}{\langle \text{skip; } c, \sigma \rangle \downarrow \sigma'}
\]

• Thus, we have D_1 :: \langle c, \sigma \rangle \downarrow \sigma’
• The other direction is similar
Proving An Inequivalence

- Prove that $x := y \not\sim x := z$ when $y \neq z$

- It suffices to exhibit a σ in which the two commands yield different results

- Let $\sigma(y) = 0$ and $\sigma(z) = 1$

- Then

 $<x := y, \sigma> \downarrow \sigma[x := 0]$

 $<x := z, \sigma> \downarrow \sigma[x := 1]$
Summary of Operational Semantics

- **Precise specification of dynamic semantics**
 - order of evaluation (or that it doesn’t matter)
 - error conditions (sometimes implicitly, by rule applicability; “no applicable rule” = “get stuck”)
- **Simple and abstract** (vs. implementations)
 - no low-level details such as stack and memory management, data layout, etc.
- Often **not compositional** (see while)
- Basis for many proofs about a language
 - Especially when combined with type systems!
- Basis for much reasoning about programs
- Point of reference for other semantics
Homework

• Homework 1 Due Today
• Homework 2 Due Next Thursday
• Read Winskel Chapter 5
 - Pay careful attention.
• Read Winskel Chapter 8
 - Summarize.