Introduction to Denotational Semantics (1/2)
Gone in Sixty Seconds

- **Denotation semantics** is a formal way of assigning meanings to programs. In it, the meaning of a program is a mathematical object.

- Denotation semantics is *compositional*: the meaning of an expression depends on the meanings of subexpressions.

- Denotational semantics uses \bot ("bottom") to mean non-termination.

- DS uses fixed points and domains to handle while.
Induction on Derivations

Summary

- If you must prove $\forall x \in A. \ P(x) \implies Q(x)$
 - A is some structure (e.g., AST), $P(x)$ is some property
 - we pick arbitrary $x \in A$ and $D :: P(x)$
 - we could do induction on both facts
 - $x \in A$ leads to induction on the structure of x
 - $D :: P(x)$ leads to induction on the structure of D
 - Generally, the induction on the structure of the derivation is more powerful and a safer bet

- Sometimes there are many choices for induction
 - choosing the right one is a trial-and-error process
 - a bit of practice can help a lot
Summary of Operational Semantics

• Precise specification of dynamic semantics
 - order of evaluation (or that it doesn’t matter)
 - error conditions (sometimes implicitly, by rule applicability; “no applicable rule” = “get stuck”)

• Simple and abstract (vs. implementations)
 - no low-level details such as stack and memory management, data layout, etc.

• Often not compositional (see while)

• Basis for many proofs about a language
 - Especially when combined with type systems!

• Basis for much reasoning about programs

• Point of reference for other semantics
Dueling Semantics

- **Operational semantics** is
 - simple
 - of many flavors (natural, small-step, more or less abstract)
 - not compositional
 - commonly used in the real (modern research) world

- **Denotational semantics** is
 - mathematical (the meaning of a syntactic expression is a mathematical object)
 - compositional

- Denotational semantics is also called: fixed-point semantics, mathematical semantics, Scott-Strachey semantics
Typical Student Reaction To Denotation Semantics
Denotational Semantics
Learning Goals

• DS is \textbf{compositional} (!)
• When should I use DS?
• In DS, meaning is a “\textit{math object}”
• DS uses \(\bot\) (“bottom”) to mean non-termination
• DS uses \textbf{fixed points} and \textbf{domains} to handle while
 - This is the tricky bit
You’re On Jeopardy!

Alex Trebek: “The answer is: this property of denotational semantics ...”
DS In The Real World

• ADA was formally specified with it
• Handy when you want to study non-trivial models of computation
 - e.g., “actor event diagram scenarios”, process calculi
• Nice when you want to compare a program in Language 1 to a program in Language 2
Deno-Challenge

• You may skip homework assignment 3 or 4 if you can find two (2) post-2000 papers in first- or second-tier PL conferences that use denotational semantics and you write me a two paragraph summary of each paper.
Foreshadowing

- **Denotational semantics** assigns meanings to programs
- The meaning will be a mathematical object
 - A number $a \in \mathbb{Z}$
 - A boolean $b \in \{\text{true}, \text{false}\}$
 - A function $c : \Sigma \rightarrow (\Sigma \cup \{\text{non-terminating}\})$
- The meaning will be determined compositionally
 - Denotation of a command is based on the denotations of its immediate sub-commands (= more than merely syntax-directed)
New Notation

• ‘Cause, why not?

 \[\] = “means” or “denotes”

• Example:

 \[\text{foo} \] = “denotation of foo”
 \[3 < 5 \] = true
 \[3 + 5 \] = 8

• Sometimes we write A[\cdot] for arith, B[\cdot] for boolean, C[\cdot] for command
Rough Idea of Denotational Semantics

• The meaning of an arithmetic expression e in state σ is a number n

• So, we try to define $A[e]$ as a function that maps the current state to an integer:

$$A[\cdot] : Aexp \rightarrow (\Sigma \rightarrow \mathbb{Z})$$

• The meaning of boolean expressions is defined in a similar way

$$B[\cdot] : Bexp \rightarrow (\Sigma \rightarrow \{true, false\})$$

• All of these denotational function are total
 - Defined for all syntactic elements
 - For other languages it might be convenient to define the semantics only for well-typed elements
Denotational Semantics of Arithmetic Expressions

• We inductively define a function
 \[A[\cdot] : \text{Aexp} \rightarrow (\Sigma \rightarrow \mathbb{Z}) \]

\[
\begin{align*}
 A[n] \sigma &= \text{the integer denoted by literal } n \\
 A[x] \sigma &= \sigma(x) \\
 A[e_1 + e_2] \sigma &= A[e_1] \sigma + A[e_2] \sigma \\
 A[e_1 - e_2] \sigma &= A[e_1] \sigma - A[e_2] \sigma \\
 A[e_1 \times e_2] \sigma &= A[e_1] \sigma \times A[e_2] \sigma
\end{align*}
\]

• This is a total function (= defined for all expressions)
Denotational Semantics of Boolean Expressions

• We inductively define a function

$$B[] : Bexp \rightarrow (\Sigma \rightarrow \{\text{true, false}\})$$

$$B[\text{true}] \sigma = \text{true}$$

$$B[\text{false}] \sigma = \text{false}$$

$$B[b_1 \land b_2] \sigma = B[b_1] \sigma \land B[b_2] \sigma$$

$$B[e_1 = e_2] \sigma = \text{if } A[e_1] \sigma = A[e_2] \sigma \text{ then true else false}$$
Seems Easy So Far

Semantics
of a structure

\[
\begin{align*}
\left[\text{\rotatebox{90}{\text{\Large \text{\textit{}}} \text{\rotatebox{-90}{\text{\Large \textit{}}}}}} \right] &= \text{carrot} \\
\left[\text{\rotatebox{180}{\text{\Large \textit{}}} \text{\rotatebox{0}{\text{\Large \textit{}}} \text{\rotatebox{180}{\text{\Large \textit{}}} \text{\rotatebox{0}{\text{\Large \textit{}}}}} \right] &= \text{bowling pin}
\end{align*}
\]

By Tom 7
Denotational Semantics for Commands

• Running a command c starting from a state σ yields another state σ'

• So, we try to define $\mathbb{C}[\cdot]c$ as a function that maps σ to σ'

$$\mathbb{C}[\cdot] : \text{Comm} \rightarrow (\Sigma \rightarrow \Sigma)$$

• Will this work? Bueller?
\(\bot = \text{Non-Termination} \)

- We introduce the special element \(\bot \) ("bottom") to denote a special resulting state that stands for **non-termination**.
- For any set \(X \), we write \(X\bot \) to denote \(X \cup \{ \bot \} \).

Convention:
whenever \(f \in X \rightarrow X\bot \) we extend \(f \) to \(X\bot \rightarrow X\bot \) so that \(f(\bot) = \bot \).
- This is called **strictness**.
Denotational Semantics of Commands

• We try:

\[C[\cdot] : \text{Comm} \rightarrow (\Sigma \rightarrow \Sigma_\bot) \]

\[
\begin{align*}
C[\text{skip}] \sigma &= \sigma \\
C[x := e] \sigma &= \sigma[x := A[e] \sigma] \\
C[c_1; c_2] \sigma &= C[c_2] (C[c_1] \sigma) \\
C[\text{if } b \text{ then } c_1 \text{ else } c_2] \sigma &= \\
&\quad \text{if } B[b]\sigma \text{ then } C[c_1]\sigma \text{ else } C[c_2]\sigma \\
C[\text{while } b \text{ do } c] \sigma &= ?
\end{align*}
\]
Examples

- \(C[x:=2; x:=1] \sigma = \sigma[x := 1] \)
- \(C[\text{if true then } x:=2; x:=1 \text{ else } ...] \sigma = \sigma[x := 1] \)
- The semantics does not care about intermediate states (cf. "big-step")
- We haven’t used \(\bot \) yet
Q: Theatre (012 / 842)

• Name the author or the 1953 play about McCarthyism that features John Proctor's famous cry of "More weight!".
Q: General (450 / 842)

- Identify the children's dance here parodied in faux-Shakespearean English:
 - *O proud left foot, that ventures quick within*
 - *Then soon upon a backward journey lithe.*
 - *Anon, once more the gesture, then begin:*
 - *Command sinistral pedestal to writhe.*
Q: Games (557 / 842)

• Name the company that manufactures Barbie (a $1.9 billion dollar a year industry in 2005 with two dolls being bought every second).
In 1995 the Swedish eurodance group Rednex released a version of this late 1800's American bluegrass tune about an attractive man of unknown provenance.
Denotational Semantics of WHILE

- Notation: \(W = C[\text{while } b \text{ do } c] \)
- Idea: rely on the equivalence (see end of notes)
 \[\text{while } b \text{ do } c \approx \text{if } b \text{ then } c; \text{ while } b \text{ do } c \text{ else skip} \]
- Try
 \[W(\sigma) = \text{if } B[b]\sigma \text{ then } W(C[c]\sigma) \text{ else } \sigma \]
- This is called the **unwinding equation**
- It is **not** a good denotation of \(W \) because:
 - It defines \(W \) in terms of itself
 - It is not evident that such a \(W \) exists
 - It does not describe \(W \) uniquely
 - It is not compositional
More on WHILE

• The unwinding equation does not specify W uniquely

• Take \(C[\text{while true do skip}] \)

• The unwinding equation reduces to \(W(\sigma) = W(\sigma) \), which is satisfied by every function!

• Take \(C[\text{while } x \neq 0 \text{ do } x := x - 2] \)

• The following solution satisfies equation (for any \(\sigma' \))

\[
W(\sigma) = \begin{cases}
\sigma[x := 0] & \text{if } \sigma(x) = 2k \land \sigma(x) \geq 0 \\
\sigma' & \text{otherwise}
\end{cases}
\]
Denotational Game Plan

• Since WHILE is recursive
 - always have something like: \(W(\sigma) = F(W(\sigma)) \)

• Admits many possible values for \(W(\sigma) \)

• We will order them
 - With respect to non-termination = “least”

• And then find the least fixed point

• LFP \(W(\sigma) = F(W(\sigma)) \) == meaning of “while”
WHILE k-steps Semantics

- Define $W_k : \Sigma \rightarrow \Sigma_\bot$ (for $k \in \mathbb{N}$) such that

\[
W_k(\sigma) = \begin{cases}
\sigma' & \text{if “while } b \text{ do } c \text{” in state } \sigma \text{ terminates in fewer than } k \\
\bot & \text{otherwise}
\end{cases}
\]

- We can define the W_k functions as follows:

\[
W_0(\sigma) = \bot \\
W_k(\sigma) = \begin{cases}
W_{k-1}(C[c]\sigma) & \text{if } B[b]\sigma \text{ for } k \geq 1 \\
\sigma & \text{otherwise}
\end{cases}
\]
WHILE Semantics

- How do we get W from W_k?
 \[W(\sigma) = \begin{cases}
 \sigma' & \text{if } \exists k. W_k(\sigma) = \sigma' \neq \bot \\
 \bot & \text{otherwise}
\end{cases} \]

- This is a valid compositional definition of W
 - Depends only on $C[c]$ and $B[b]$

- Try the examples again:
 - For $C[\text{while true do skip}]$
 \[W_k(\sigma) = \bot \text{ for all } k, \text{ thus } W(\sigma) = \bot \]
 - For $C[\text{while } x \neq 0 \text{ do } x := x - 2]$
 \[W(\sigma) = \begin{cases}
 \sigma[x:=0] & \text{if } \sigma(x) = 2n \land \sigma(x) \geq 0 \\
 \bot & \text{otherwise}
\end{cases} \]
More on WHILE

- The solution is not quite satisfactory because
 - It has an operational flavor (= “run the loop”)
 - It does not generalize easily to more complicated semantics (e.g., higher-order functions)

- However, precisely due to the operational flavor this solution is easy to prove sound w.r.t operational semantics
That Wasn’t Good Enough!?
Simple Domain Theory

- Consider programs in an eager, deterministic language with one variable called “x”
 - All these restrictions are just to simplify the examples
- A state σ is just the value of x
 - Thus we can use \mathbb{Z} instead of Σ
- The semantics of a command give the value of final x as a function of input x

$$C[c] : \mathbb{Z} \rightarrow \mathbb{Z}_\perp$$
Examples - Revisited

• Take $C[\text{while true do skip}]$
 - Unwinding equation reduces to $W(x) = W(x)$
 - Any function satisfies the unwinding equation
 - Desired solution is $W(x) = \perp$

• Take $C[\text{while } x \neq 0 \text{ do } x := x - 2]$
 - Unwinding equation:
 \[W(x) = \begin{cases} W(x - 2) & \text{if } x \neq 0 \\ x & \text{else} \end{cases} \]
 - Solutions (for all values $n, m \in \mathbb{Z}_\perp$):
 \[W(x) = \begin{cases} 0 & \text{if } x \geq 0 \text{ and } x \text{ even} \\ n & \text{else} \end{cases} \]
 - Desired solution: $W(x) = \begin{cases} 0 & \text{if } x \geq 0 \land x \text{ even} \\ \perp & \text{else} \end{cases}$
An Ordering of Solutions

- The desired solution is the one in which all the arbitrariness is replaced with non-termination.
 - The arbitrary values in a solution are not uniquely determined by the semantics of the code.
- We introduce an ordering of semantic functions.
- Let $f, g \in \mathbb{Z} \rightarrow \mathbb{Z}_\perp$.
- Define $f \sqsubseteq g$ as
 \[\forall x \in \mathbb{Z}. \ f(x) = \perp \text{ or } f(x) = g(x) \]
 - A “smaller” function terminates at most as often, and when it terminates it produces the same result.
Alternative Views of Function Ordering

- A semantic function $f \in \mathbb{Z} \rightarrow \mathbb{Z}_\perp$ can be written as $S_f \subseteq \mathbb{Z} \times \mathbb{Z}$ as follows:

 $$S_f = \{ (x, y) \mid x \in \mathbb{Z}, f(x) = y \neq \bot \}$$

 - set of “terminating” values for the function

- If $f \sqsubseteq g$ then
 - $S_f \subseteq S_g$ (and vice-versa)
 - We say that g refines f
 - We say that f approximates g
 - We say that g provides more information than f
The “Best” Solution

• Consider again \(\text{C[while } x \neq 0 \text{ do } x := x - 2] \)
 - Unwinding equation:
 \[W(x) = \text{if } x \neq 0 \text{ then } W(x - 2) \text{ else } x \]

• Not all solutions are comparable:
 \[W(x) = \text{if } x \geq 0 \text{ then if } x \text{ even then } 0 \text{ else } 1 \text{ else } 2 \]
 \[W(x) = \text{if } x \geq 0 \text{ then if } x \text{ even then } 0 \text{ else } \bot \text{ else } 3 \]
 \[W(x) = \text{if } x \geq 0 \text{ then if } x \text{ even then } 0 \text{ else } \bot \text{ else } \bot \]
 (last one is least and best)

• Is there always a least solution?
• How do we find it?
• *If only we had a general framework* for answering these questions ...
Fixed-Point Equations

• Consider the general unwinding equation for \texttt{while}
 \texttt{while b do c ≡ if b then c; while b do c else skip}

• We define a context \(C \) (command with a hole)
 \[C = \texttt{if b then c; \bullet else skip} \]
 \texttt{while b do c ≡ C[while b do c]}
 \begin{itemize}
 \item The grammar for \(C \) does not contain “while b do c”
 \end{itemize}

• We can find such a (recursive) context for any looping construct
 \begin{itemize}
 \item Consider: \texttt{fact n = if n = 0 then 1 else n * fact (n - 1)}
 \item \(C(n) = \texttt{if n = 0 then 1 else n * \bullet (n - 1)} \)
 \item \texttt{fact = C [fact]}
 \end{itemize}
Fixed-Point Equations

• The meaning of a context is a semantic functional
 \(F : (\mathbb{Z} \rightarrow \mathbb{Z}_\perp) \rightarrow (\mathbb{Z} \rightarrow \mathbb{Z}_\perp) \) such that
 \[F [C[w]] = F [w] \]
• For “while”: \(C = \text{if } b \text{ then } c; \bullet \text{ else skip} \)
 \[F w x = \text{if } [b] x \text{ then } w ([c] x) \text{ else } x \]
 - \(F \) depends only on \([c]\) and \([b]\)
• We can rewrite the unwinding equation for while
 - \(W(x) = \text{if } [b] x \text{ then } W([c] x) \text{ else } x \)
 - or, \(W x = F W x \) for all \(x \),
 - or, \(W = F W \) (by function equality)
Fixed-Point Equations

• The meaning of “while” is a solution for $W = F W$
• Such a W is called a fixed point of F
• We want the least fixed point
 - We need a general way to find least fixed points
• Whether such a least fixed point exists depends on the properties of function F
 - Counterexample: $F w x = \text{if } w x = \bot \text{ then } 0 \text{ else } \bot$
 - Assume W is a fixed point
 - $F W x = W x = \text{if } W x = \bot \text{ then } 0 \text{ else } \bot$
 - Pick an x, then $\text{if } W x = \bot \text{ then } W x = 0 \text{ else } W x = \bot$
 - Contradiction. This F has no fixed point!
Can We Solve This?

• Good news: the functions F that correspond to contexts in our language have least fixed points!
• The only way $F \, w \, x$ uses w is by invoking it.
• If any such invocation diverges, then $F \, w \, x$ diverges!
• It turns out: F is monotonic, continuous
 - Not shown here!
New Notation: \(\lambda \)

- \(\lambda x. e \)
 - an anonymous function with body \(e \) and argument \(x \)

- Example: \(\text{double}(x) = x+x \)
 \[
 \text{double} = \lambda x. x+x
 \]

- Example: \(\text{allFalse}(x) = \text{false} \)
 \[
 \text{allFalse} = \lambda x. \text{false}
 \]

- Example: \(\text{multiply}(x,y) = x*y \)
 \[
 \text{multiply} = \lambda x. \lambda y. x*y
 \]
The Fixed-Point Theorem

- If F is a semantic function corresponding to a context in our language
 - F is monotonic and continuous (we assert)
 - For any fixed-point G of F and $k \in \mathbb{N}$
 \[F^k(\lambda x. \perp) \subseteq G \]
 - The least of all fixed points is
 \[\bigsqcup_k F^k(\lambda x. \perp) \]

- Proof (not detailed in the lecture):
 1. By mathematical induction on k.
 Base: $F^0(\lambda x. \perp) = \lambda x. \perp \subseteq G$
 Inductive: $F^{k+1}(\lambda x. \perp) = F(F^k(\lambda x. \perp)) \subseteq F(G) = G$
 - Suffices to show that $\bigsqcup_k F^k(\lambda x. \perp)$ is a fixed-point
 \[F(\bigsqcup_k F^k(\lambda x. \perp)) = \bigsqcup_k F^{k+1}(\lambda x. \perp) = \bigsqcup_k F^k(\lambda x. \perp) \]
WHILE Semantics

- We can use the fixed-point theorem to write the denotational semantics of while:

 \[\text{while } b \text{ do } c = \bigcup_k F^k (\lambda x. \perp) \]

 where \(F f x = \text{if } \llbracket b \rrbracket x \text{ then } f (\llbracket c \rrbracket x) \text{ else } x \)

- Example: \(\llbracket \text{while true do skip} \rrbracket = \lambda x. \perp \)

- Example: \(\llbracket \text{while } x \neq 0 \text{ then } x := x - 1 \rrbracket \)
 - \(F (\lambda x. \perp) x = \text{if } x = 0 \text{ then } x \text{ else } \perp \)
 - \(F^2 (\lambda x. \perp) x = \text{if } x = 0 \text{ then } x \text{ else if } x-1 = 0 \text{ then } x-1 \text{ else } \perp \)
 = \(\text{if } 1 \geq x \geq 0 \text{ then } 0 \text{ else } \perp \)
 - \(F^3 (\lambda x. \perp) x = \text{if } 2 \geq x \geq 0 \text{ then } 0 \text{ else } \perp \)
 - \(\text{LFP}_F = \text{if } x \geq 0 \text{ then } 0 \text{ else } \perp \)

- Not easy to find the closed form for general LFPs!
Discussion

• We can write the denotational semantics but we cannot always compute it.
 - Otherwise, we could decide the halting problem
 - H is halting for input 0 iff $\llbracket H \rrbracket 0 \neq \perp$

• We have derived this for programs with one variable
 - Generalize to multiple variables, even to variables ranging over richer data types, even higher-order functions: domain theory
Can You Remember?

You just survived the hardest lectures in 615.
It’s all downhill from here.
Recall: Learning Goals

• DS is **compositional**
• When should I use DS?
• In DS, meaning is a “math object”
• DS uses \(\bot\) (“bottom”) to mean non-termination
• DS uses **fixed points** and **domains** to handle while
 - This is the tricky bit
Homework

- Homework 2 Due Thursday
- Homework 3
 - Not as long as it looks - separated out every exercise sub-part for clarity.
 - Your denotational answers must be compositional (e.g., $W_k(\sigma)$ or LFP)
- Read Winskel Chapter 6
- Read Hoare article
- Read Floyd article
Equivalence

- Two expressions (commands) are equivalent if they yield the same result from all states

\[e_1 \approx e_2 \iff \forall \sigma \in \Sigma. \forall n \in \mathbb{N}. \]
\[<e_1, \sigma> \Downarrow n \iff <e_2, \sigma> \Downarrow n \]

and for commands

\[c_1 \approx c_2 \iff \forall \sigma, \sigma' \in \Sigma. \]
\[<c_1, \sigma> \Downarrow \sigma' \iff <c_2, \sigma> \Downarrow \sigma' \]
Notes on Equivalence

- Equivalence is like logical validity
 - It must hold in all states (= all valuations)
 - $2 \approx 1 + 1$ is like “$2 = 1 + 1$ is valid”
 - $2 \approx 1 + x$ might or might not hold.
 - So, 2 is not equivalent to $1 + x$
- Equivalence (for IMP) is **undecidable**
 - If it were decidable we could solve the halting problem for IMP. *How?*
- Equivalence justifies code transformations
 - compiler optimizations
 - code instrumentation
 - abstract modeling
- **Semantics** is the basis for proving equivalence
Equivalence Examples

- skip; c \approx c
- while b do c \approx if b then c; while b do c else skip
- If e_1 \approx e_2 then x := e_1 \approx x := e_2
- while true do skip \approx while true do x := x + 1
- If c is
 while x \neq y do
 if x \geq y then x := x - y else y := y - x
 then
 (x := 221; y := 527; c) \approx (x := 17; y := 17)
Potential Equivalence

- \((x := e_1; x := e_2) \approx x := e_2\)

- Is this a valid equivalence?
Not An Equivalence

\((x := e_1; x := e_2) \sim x := e_2 \)

lie. Chigau yo. Dame desu!

Not a valid equivalence for all \(e_1, e_2 \).

Consider:

\(- (x := x+1; x := x+2) \sim x := x+2 \)

But for \(n_1, n_2 \) it’s fine:

\(- (x := n_1; x := n_2) \approx x := n_2 \)
Proving An Equivalence

• Prove that “skip; c ≈ c” for all c
• Assume that D :: <skip; c, σ> ↓ σ'
• By inversion (twice) we have that

\[D :: \frac{\langle \text{skip}, \sigma \rangle \downarrow \sigma \quad D_1 :: \langle c, \sigma \rangle \downarrow \sigma'}{\langle \text{skip}; c, \sigma \rangle \downarrow \sigma'} \]

• Thus, we have D_1 :: <c,σ> ↓ σ'
• The other direction is similar
Proving An Inequivalence

- Prove that $x := y \not\sim x := z$ when $y \neq z$
- It suffices to exhibit a σ in which the two commands yield different results

- Let $\sigma(y) = 0$ and $\sigma(z) = 1$
- Then

 $$<x := y, \sigma> \Downarrow \sigma[x := 0]$$
 $$<x := z, \sigma> \Downarrow \sigma[x := 1]$$