Abstract Interpretation (Non-Standard Semantics)

a.k.a.
“Picking The Right Abstraction”
Apologies to Ralph Macchio

• Daniel: You're supposed to teach and I'm supposed to learn. Four homeworks I've been working on IMP, I haven't learned a thing.
• Miyagi: You learn plenty.
• Daniel: I learn plenty, yeah. I learned how to analyze IMP, maybe. I evaluate your commands, derive your judgments, prove your soundness. I learn plenty!
• Miyagi: Not everything is as seems.
• Daniel: You’re not even relatively complete! I'm going home, man.
• Miyagi: Daniel-san!
• Daniel: What?
• Miyagi: Come here. Show me “compute the VC”.
Why analyze programs statically?
MS Patch Tuesday - Plus ca change

• “eEye Digital Security has reported a vulnerability in Windows Media Player ... due to a boundary error within the processing of bitmap files (.bmp) and can be exploited to cause a heap-based buffer overflow via a specially crafted bitmap file that declares its size as 0 ... exploitation allows execution of arbitrary code”

• Six of seven “critical” or “important” bugs were found by people outside of Microsoft
The Problem

• It is extremely useful to predict program behavior \textit{statically} (= without running the program)
 - For optimizing compilers, program analyses, software engineering tools, finding security flaws, etc.

• The semantics we studied so far give us the precise behavior of a program

• However, precise static predictions are impossible
 - The exact semantics is not computable

• We must settle for \textit{approximate}, but correct, static analyses (e.g. VC vs. WP)
The Plan

• We will introduce **abstract interpretation** by example

• Starting with a miniscule language we will build up to a fairly realistic application

• Along the way we will see most of the ideas and difficulties that arise in a big class of applications
A Tiny Language

• Consider the following language of arithmetic ("shrIMP"?)

 \[e ::= n \mid e_1 \times e_2 \]

• The denotational semantics of this language

 \[[n] = n \]

 \[[e_1 \times e_2] = [e_1] \times [e_2] \]

• We’ll take deno-sem as the “ground truth”

• For this language the precise semantics is computable (but in general it’s not)
An Abstraction

• Assume that we are interested not in the value of the expression, but only in its sign:
 - positive (+), negative (-), or zero (0)

• We can define an abstract semantics that computes only the sign of the result

\[\sigma : \text{Exp} \rightarrow \{-, 0, +\} \]

\[\sigma(n) = \text{sign}(n) \]

\[\sigma(e_1 \times e_2) = \sigma(e_1) \times \sigma(e_2) \]
I Saw the Sign

• Why did we want to compute the sign of an expression?
 - One reason: no one will believe you know abstract interpretation if you haven’t seen the sign thing

• What could we be computing instead?
 - Alex Aiken was here ...
Correctness of Sign Abstraction

• We can show that the abstraction is correct in the sense that it predicts the sign

$$[e] > 0 \iff \sigma(e) = +$$
$$[e] = 0 \iff \sigma(e) = 0$$
$$[e] < 0 \iff \sigma(e) = -$$

• Our semantics is abstract but precise

• Proof is by \textit{structural induction} on the expression \(e\)
 - Each case repeats similar reasoning
Another View of Soundness

- Link each concrete value to an abstract one:
 \[\beta : \mathbb{Z} \rightarrow \{-, 0, +\} \]
- This is called the abstraction function \(\beta \)
 - This three-element set is the abstract domain
- Also define the concretization function \(\gamma \):
 \[\gamma : \{-, 0, +\} \rightarrow \mathcal{P}(\mathbb{Z}) \]
 \[\gamma(+) = \{ n \in \mathbb{Z} | n > 0 \} \]
 \[\gamma(0) = \{ 0 \} \]
 \[\gamma(-) = \{ n \in \mathbb{Z} | n < 0 \} \]
Another View of Soundness 2

• Soundness can be stated succinctly

\[\forall e \in \text{Exp. } \llbracket e \rrbracket \in \gamma(\sigma(e)) \]

(the real value of the expression is among the concrete values represented by the abstract value of the expression)

• Let \(C \) be the **concrete domain** (e.g. \(\mathbb{Z} \)) and \(A \) be the **abstract domain** (e.g. \{-, 0, +\})

• **Commutative diagram:**
Another View of Soundness 3

• Consider the generic abstraction of an operator
 \[\sigma(e_1 \text{ op } e_2) = \sigma(e_1) \text{ op } \sigma(e_2) \]

• This is sound iff
 \[\forall a_1 \forall a_2. \gamma(a_1 \text{ op } a_2) \supseteq \{ n_1 \text{ op } n_2 \mid n_1 \in \gamma(a_1), n_2 \in \gamma(a_2) \} \]

• e.g. \[\gamma(a_1 \otimes a_2) \supseteq \{ n_1 \ast n_2 \mid n_1 \in \gamma(a_1), n_2 \in \gamma(a_2) \} \]

• This reduces the proof of correctness to one proof
 for each operator
Abstract Interpretation

• This is our first example of an abstract interpretation
• We carry out computation in an abstract domain
• The abstract semantics is a sound approximation of the standard semantics
• The concretization and abstraction functions establish the connection between the two domains
Adding Unary Minus and Addition

- We extend the language to
 \[e ::= n \mid e_1 \ast e_2 \mid - e \]
- We define \(\sigma(-e) = \bigcirc \sigma(e) \)

- Now we add addition:
 \[e ::= n \mid e_1 \ast e_2 \mid - e \mid e_1 + e_2 \]
- We define \(\sigma(e_1 + e_2) = \sigma(e_1) \bigoplus \sigma(e_2) \)
Adding Addition

- The sign values are **not closed** under addition.
- What should be the value of “+ ⊕ −”?
- Start from the soundness condition:

\[\gamma(+ \oplus -) \supseteq \{ n_1 + n_2 \mid n_1 > 0, n_2 < 0 \} = \mathbb{Z} \]

- We don’t have an abstract value whose concretization includes \(\mathbb{Z}\), so we add one:

\[T \ ("top" \ = \ "don’t know") \]
Loss of Precision

- Abstract computation may lose information:

 \[
 \lceil (1 + 2) + -3 \rceil = 0
 \]
 but:
 \[
 \sigma((1+2) + -3) =
 \]
 \[
 (\sigma(1) \oplus \sigma(2)) \oplus \sigma(-3) =
 \]
 \[
 (+ \oplus +) \oplus - = \top
 \]

- We lost some precision
- But this will simplify the computation of the abstract answer in cases when the precise answer is not computable
Adding Division

- Straightforward except for **division by 0**
 - We say that there is **no answer** in that case
 - $\gamma(+ \oplus 0) = \{ n \mid n = n_1 / 0 , n_1 > 0 \} = \emptyset$

- **Introduce \perp** to be the abstraction of the \emptyset
 - We also use the same abstraction for non-termination!
 - $\perp = \text{“nothing”}$
 - $\top = \text{“something unknown”}$
This 1962 Newbery Medal-winning novel by Madeleine L'Engle includes Charles Wallace, Mrs. Who, Mrs. Whatsit, Mrs. Which and the space-bending Tesseract.
Q: Events (596 / 842)

• Fill in the blanks of this 1993 joke with the name of the Prime Minister of the United Kingdom:
 - The Bosnian peace talks continued in Geneva today. The only thing that Alija Izetbegovic, Radovan Karadzic and Slobodan Milosovic could agree on was that blank blank has a funny name.
In this 1985 movie based on the autobiography by Isak Denesen, Meryl Streep wants more than a love affair with Robert Redford but he wants to retain his freedom and eventually dies in a plane crash. It won 7 oscars and was nominated for 4 more.
• In English, 6 of the 7 days of the week are named after Norse gods. Give two of those days and their associated gods.
The Abstract Domain

- Our abstract domain forms a **lattice**
- A partial order is induced by γ

 $$a_1 \leq a_2 \text{ iff } \gamma(a_1) \subseteq \gamma(a_2)$$

 - We say that a_1 is **more precise** than a_2!
- Every **finite subset** has a least-upper bound (lub) and a greatest-lower bound (glb)
Lattice Facts

- A lattice is **complete** when every subset has a lub and a gub
 - Even infinite subsets!
- Every finite lattice is (trivially) complete
- Every complete lattice is a **complete partial order** (recall: denotational semantics!)
 - Since a chain is a subset
- Not every CPO is a complete lattice
 - Might not even be a lattice at all
Lattice History

• **Early work** in denotational semantics used lattices (instead of what?)
 - But only chains need to have lubs
 - And there was no need for \top and glb

• In abstract interpretation we’ll use \top to denote “I don’t know”.
 - Corresponds to all values in the concrete domain
From One, Many

• We can start with the abstraction function \(\beta \)
 \[
 \beta : C \rightarrow A
 \]
 (maps a concrete value to the best abstract value)
 - A must be a lattice

• We can derive the concretization function \(\gamma \)
 \[
 \gamma : A \rightarrow \mathcal{P}(C)
 \]
 \[
 \gamma(a) = \{ x \in C \mid \beta(x) \leq a \}
 \]

• And the abstraction for sets \(\alpha \)
 \[
 \alpha : \mathcal{P}(C) \rightarrow A
 \]
 \[
 \alpha(S) = \text{lub} \{ \beta(x) \mid x \in S \}
 \]
Example

- Consider our sign lattice
 \[
 \beta(n) = \begin{cases}
 + & \text{if } n > 0 \\
 0 & \text{if } n = 0 \\
 - & \text{if } n < 0
 \end{cases}
 \]

- \(\alpha(S) = \text{lub} \{ \beta(x) \mid x \in S \} \)
 - Example: \(\alpha(\{1, 2\}) = \text{lub} \{ + \} = + \)
 \(\alpha(\{1, 0\}) = \text{lub} \{ +, 0 \} = \top \)
 \(\alpha(\{\} \) = \text{lub} \emptyset = \bot \)

- \(\gamma(a) = \{ n \mid \beta(n) \leq a \} \)
 - Example: \(\gamma(+) = \{ n \mid \beta(n) \leq + \} = \{ n \mid \beta(n) = + \} = \{ n \mid n > 0 \} \)
 \(\gamma(\top) = \{ n \mid \beta(n) \leq \top \} = \mathbb{Z} \)
 \(\gamma(\bot) = \{ n \mid \beta(n) \leq \bot \} = \emptyset \)
Galois Connections

- We can show that
 - γ and α are monotonic (with \subseteq ordering on $\mathcal{P}(C)$)
 - $\alpha(\gamma(a)) = a$ for all $a \in A$
 - $\gamma(\alpha(S)) \supseteq S$ for all $S \in \mathcal{P}(C)$

- Such a pair of functions is called a **Galois connection**
 - Between the lattices A and $\mathcal{P}(C)$
Correctness Condition

• In general, abstract interpretation satisfies the following (amazingly common) diagram
Three Little Correctness Conditions

- Three conditions define a correct abstract interpretation
- α and γ are monotonic
- α and γ form a Galois connection

 = “α and γ are almost inverses”

4. Abstraction of operations is correct

$$a_1 \text{ op } a_2 = \alpha(\gamma(a_1) \text{ op } \gamma(a_2))$$
On The Board Questions

- What is the VC for:

 \[
 \text{for } i = e_{\text{low}} \text{ to } e_{\text{high}} \text{ do } c \text{ done}
 \]

- This axiomatic rule is unsound. Why?

\[
\begin{align*}
\vdash \{A \land p\} & \quad \text{c}_\text{then} \quad \{B_\text{then}\} \\
\vdash \{A \land \neg p\} & \quad \text{c}_\text{else} \quad \{B_\text{else}\}
\end{align*}
\]

\[
\vdash \{A\} \quad \text{if } p \text{ then } \text{c}_\text{then} \quad \text{else } \text{c}_\text{else} \quad \{B_\text{then} \lor B_\text{else}\}
\]
Homework

- Read Ken Thompson Turing Award