Type Systems For: Exceptions, Continuations, and Recursive Types
One-Slide Summary

• **Exceptions** are like non-local gotos; they are used to propagate errors. We will use contextual semantics to model them.

• **Continuations** allow you to take a snapshot of the current execution and store it for later use. They are often used for threads or backtracking. We will use contextual semantics to model them.

• **Recursive types** describe recursive data structures. F_1 with them, F_1^μ, is as powerful as the untyped lambda calculus.
Exceptions

• A mechanism that allows **non-local control flow**
 - Useful for implementing the **propagation of errors to caller**

• Exceptions ensure* that errors are not ignored
 - Compare with the **manual error handling** in C

• **Languages with exceptions:**
 - C++, ML, Modula-3, Java, C#, ...

• We assume that there is a special type **exn** of exceptions
 - exn could be int to model error codes
 - In Java or C++, exn is a special object types

* Supposedly.
Modeling Exceptions

- Syntax
 \[
 e ::= ... \mid \text{raise } e \mid \text{try } e_1 \text{ handle } x \Rightarrow e_2
 \]
 \[
 \tau ::= ... \mid \text{exn}
 \]

- We ignore here how exception values are created
 - In examples we will use integers as exception values
- The handler binds \(x \) in \(e_2 \) to the actual exception value
- The “\text{raise}” expression never returns to the immediately enclosing context
 - \(1 + \text{raise } 2 \) is well-typed
 - if (\text{raise } 2) then 1 else 2 is also well-typed
 - (\text{raise } 2) 5 is also well-typed
 - What should be the type of \text{raise}?
Example with Exceptions

- A (strange) **factorial** function

  ```ocaml
  let f = \x:int.\res:int. if x = 0 then raise res
  else f (x - 1) (res * x)
  in try f 5 1 handle x ⇒ x
  
  - The function returns in one step from the recursion
  
  - The **top-level handler catches** the exception and turns it into a regular result
  ```
Typing Exceptions

- New typing rules

\[\Gamma \vdash e : \text{exn} \]
\[\Gamma \vdash \text{raise } e : \tau \]
\[\Gamma \vdash e_1 : \tau \quad \Gamma, x : \text{exn} \vdash e_2 : \tau \]
\[\Gamma \vdash \text{try } e_1 \text{ handle } x \Rightarrow e_2 : \tau \]

- A raise expression has an *arbitrary type*
 - This is a clear sign that the expression does not return to its evaluation context

- The type of the body of try and of the handler must match
 - Just like for conditionals
Dynamics of Exceptions

• The result of evaluation can be an uncaught exception
 - Evaluation answers: $a ::= v \mid \text{uncaught } v$
 - “uncaught v” has an arbitrary type
• Raising an exception has global effects
• It is convenient to use contextual semantics
 - Exceptions propagate through some contexts but not through others
 - We distinguish the handling contexts that intercept exceptions (this will be new)
Contexts for Exceptions

• **Contexts**

 - $H ::= \bullet \mid H \ e \mid \nu \ H \mid \mathit{raise} \ H \mid \mathit{try} \ H \ handle \ x \Rightarrow e$

• **Propagating contexts**

 - Contexts that propagate exceptions to their own enclosing contexts

 - $P ::= \bullet \mid P \ e \mid \nu \ P \mid \mathit{raise} \ P$

• **(New) Decomposition theorem**

 - If e is not a value and e is well-typed then it can be decomposed in exactly one of the following ways:

 • $H[(\lambda x: \tau. \ e) \ v]$ (normal lambda calculus)
 • $H[\mathit{try} \ v \ handle \ x \Rightarrow e]$ (handle it or not)
 • $H[\mathit{try} \ P[\mathit{raise} \ v] \ handle \ x \Rightarrow e]$ (propagate!)
 • $P[\mathit{raise} \ v]$ (uncaught exception)
Contextual Semantics for Exceptions

• Small-step reduction rules

\[H[(\lambda x:\tau. \ e) \ v] \]
\[\Rightarrow H[[v/x] \ e] \]

\[H[\text{try } v \ \text{handle } x \Rightarrow e] \]
\[\Rightarrow H[v] \]

\[H[\text{try } P[\text{raise } v] \ \text{handle } x \Rightarrow e] \]
\[\Rightarrow H[[v/x] \ e] \]
\[P[\text{raise } v] \]
\[\Rightarrow \text{uncaught } v \]

• The handler is ignored if the body of try completes normally

• A raised exception propagates (in one step) to the closest enclosing handler or to the top of the program
Exceptional Commentary

• The addition of exceptions preserves type soundness
• Exceptions are like *non-local goto*
• However, they cannot be used to implement recursion
 - Thus we *still* cannot write (well-typed) *non-terminating programs*
• There are a number of ways to implement exceptions (e.g., “zero-cost” exceptions)
Continuations

- Some languages have a mechanism for **taking a snapshot of the execution and storing it for later use**
 - Later the execution can be reinstated from the snapshot
 - Useful for implementing threads, for example
 - Examples: Scheme, LISP, ML, C (yes, really!)

- Consider the expression: $e_1 + e_2$ in a context C
 - How to express a snapshot of the execution right after evaluating e_1 but before evaluating e_2 and the rest of C?
 - Idea: *as a context* $C_1 = C \ [\bullet + e_2]$
 - Alternatively, as $\lambda x_1. C \ [\ x_1 + e_2]$
 - When we finish evaluating e_1 to v_1, we fill the context and continue with $C[v_1 + e_2]$
 - But the C_1 continuation is still available and we can continue several times, with different replacements for e_1
Continuation Uses in “Real Life”

• You’re walking and come to a fork in the road
• You save a continuation “right” for going right
• But you go left (with the “right” continuation in hand)
• You encounter Bender. Bender coerces you into joining his computer dating service.
• You save a continuation “bad-date” for going on the date.
• You decide to invoke the “right” continuation
• So, you go right (no evil date obligation, but with the “bad-date” continuation in hand)
• A train hits you!
• On your last breath, you invoke the “bad-date” continuation
Continuations

• Syntax:

 \[e ::= \text{callcc } k \text{ in } e \mid \text{throw } e_1 \ e_2 \]
 \[\tau ::= \ldots \mid \tau \ text{cont} \]

• \(\tau \text{ cont} \) - the type of a continuation that expects a \(\tau \)

• \(\text{callcc } k \text{ in } e \) - sets \(k \) to the \textit{current context} of the execution and then evaluates expression \(e \)
 - when \(e \) terminates, the whole callcc terminates
 - \(e \) can invoke the saved continuation (many times even)
 - when \(e \) invokes \(k \) it is as if “callcc \(k \) in \(e \)” returns
 - \(k \) is \text{bound} in \(e \)

• \(\text{throw } e_1 \ e_2 \) - evaluates \(e_1 \) to a continuation, \(e_2 \) to a value and invokes the continuation with the value of \(e_2 \) (just wait, we’ll explain it!)
Example with Continuations

• Example: another strange factorial

```ocaml
callcc k in
  let f = \x:int. \res:int. if x = 0 then throw k res
    else f (x - 1) (x * res)
  in f 5 1
```

• First we save the current context
 - This is the top-level context
 - A throw to k of value v means “pretend the whole callcc evaluates to v”

• This simulates exceptions
• Continuations are strictly more powerful that exceptions
 - The destination is not tied to the call stack
Q: Movies (364 / 842)

• According to Vizzini in the movie *The Princess Bride*, what are two classic blunders?
This 1953 dystopian novel by Ray Bradbury has censorship as a major theme. The main character, Guy Montag, is a fireman.
Q: Advertising (812 / 842)

• This corporation has manufactured Oreo cookies since 1912. Originally, Oreos were mound-shaped; hence the name "oreo" (Greek for "hill").
Logic in Prose

148. Except living with others our whole life, we are both alone, solitary.

211. It was an uncomfortable silence. It was as if they were both as ease with each other.

270. He probably does know me but he where's a mask, so illogically he could be a number of people that I know.

426. Though her grades proved otherwise, Maebay wasn't an idiot.

313. Hermione Granger was head girl, and to everyone's surprise, so was Draco Malfoy.
Static Semantics of Continuations

\[
\begin{align*}
\Gamma, k : \tau & \text{ cont } \vdash e : \tau \\
\Gamma & \vdash \text{callcc } k \text{ in } e : \tau
\end{align*}
\]

\[
\begin{align*}
\Gamma & \vdash e_1 : \tau \text{ cont } \quad \Gamma & \vdash e_2 : \tau \\
\Gamma & \vdash \text{throw } e_1 \ e_2 : \tau'
\end{align*}
\]

- Note that the result of callcc is of type \(\tau\) “callcc k in e” returns in two possible situations
 - e \textit{throws} to k a value of type \(\tau\), or
 - e \textit{terminates normally} with a value of type \(\tau\)
- Note that throw has any type \(\tau'\)
 - Since it \textit{never returns} to its enclosing context
Dynamic Semantics of Continuations

• Use contextual semantics (wow, again!)
 - Contexts are now manipulated directly
 - Contexts are values of type τ cont

• Contexts
 $$H ::= \bullet | H e | v H | \text{throw } H_1 e_2 | \text{throw } v_1 H_2$$

• Evaluation rules
 - $H[(\lambda x.e) v] \rightarrow H[[v/x] e]$
 - $H[\text{callcc } k \text{ in } e] \rightarrow H[[H/k] e]$
 - $H[\text{throw } H_1 v_2] \rightarrow H_1[v_2]$

• callcc duplicates the current continuation
• Note that throw abandons its own context
Implementing Coroutines with Continuations

- Example:

```plaintext
let client = \k. let res = callcc k' in throw k k' in
              print (fst res);
              client (snd res)
```

- “client k” will invoke “k” to get an integer and a continuation for obtaining more integers *(for now, assume the list & recursion work)*

```plaintext
let getnext =
    \L.\k. if L = nil then raise 999
         else getnext (cdr L) (callcc k' in throw k (car L, k'))
```

- “getnext L k” will send to “k” the first element of L along with a continuation that can be used to get more elements of L

```plaintext
getnext [0;1;2;3;4;5] (callcc k in client k)
```
Continuation Comments

• In our semantics the **continuation saves the entire context**: program counter, local variables, call stack, and the heap!

• In actual implementations the **heap is not saved**!

• Saving the stack is done with various tricks, but it is **expensive** in general

• Few languages implement continuations
 - Because their presence complicates the whole compiler considerably
 - Unless you use a continuation-passing-style of compilation (more on this next)
Continuation Passing Style

- A style of compilation where evaluation of a function *never returns directly*: instead the function is *given a continuation to invoke with its result*.
- Instead of \(f(\text{int } a) \{ \text{ return } h(g(e)); \} \)
- we write \(f(\text{int } a, \text{cont } k) \{ g(e, \lambda r. h(r, k)) \} \)
- Advantages:
 - interesting compilation scheme (supports callcc easily)
 - *no need for a stack*, can have multiple return addresses (e.g., for an error case)
 - fast and safe (non-preemptive) multithreading
Continuation Passing Style

- Let $e ::= x \mid n \mid e_1 + e_2 \mid \text{if } e_1 \text{ then } e_2 \text{ else } e_3$
 \hspace{1cm} \mid \lambda x. e \mid e_1 e_2$

- Define $\text{cps}(e, k)$ as the code that computes e in CPS and passes the result to continuation k

 \begin{align*}
 \text{cps}(x, k) &= k x \\
 \text{cps}(n, k) &= k n \\
 \text{cps}(e_1 + e_2, k) &= \\
 &\quad \text{cps}(e_1, \lambda n_1. \text{cps}(e_2, \lambda n_2. k (n_1 + n_2))) \\
 \text{cps}(\lambda x. e, k) &= k (\lambda x \lambda k'. \text{cps}(e, k')) \\
 \text{cps}(e_1 e_2, k) &= \text{cps}(e_1, \lambda f_1. \text{cps}(e_2, \lambda v_2. f_1 v_2 k))
 \end{align*}

- Example: $\text{cps } (h(g(5)), k) = g(5, \lambda x. h x k)$
 - Notice the order of evaluation being explicit
Recursive Types: Lists

- We want to define **recursive data structures**

- Example: **lists**
 - A list of elements of type τ (a τ list) is *either empty* or it is a *pair* of a τ and a τ list

 $$\tau\text{ list } = \text{unit } + \ (\tau \times \tau\text{ list})$$

 - This is a **recursive equation**. We take its solution to be the smallest set of values L that satisfies the equation

 $$L = \{ * \} \cup (T \times L)$$

 where T is the set of values of type τ

 - Another interpretation is that the recursive equation is taken up-to (modulo) set isomorphism
Recursive Types

- We introduce a **recursive type constructor** \(\mu \) (mu):
 \[
 \mu t. \tau
 \]
 - The type variable \(t \) is **bound** in \(\tau \)
 - This stands for the solution to the equation
 \[
 t \simeq \tau \quad (t \text{ is isomorphic with } \tau)
 \]
 - Example: \(\tau \text{ list} = \mu t. (\text{unit} + \tau \times t) \)
 - This also allows “unnamed” recursive types

- We introduce syntactic (sugary) operations for the conversion between \(\mu t. \tau \) and \([\mu t. \tau/t] \tau\)

- e.g. between “\(\tau \text{ list} \)” and “\(\text{unit} + (\tau \times \tau \text{ list}) \)”
 \[
 e ::= ... \mid \text{fold}_{\mu t. \tau} e \mid \text{unfold}_{\mu t. \tau} e
 \]
 \[
 \tau ::= ... \mid t \mid \mu t. \tau
 \]
Example with Recursive Types

- **Lists**
 \[
 \tau \text{ list} = \mu t. (\text{unit} + \tau \times t) \\
 \text{nil}_\tau = \text{fold}_\tau \text{list} (\text{injl } *) \\
 \text{cons}_\tau = \lambda x: \tau. \lambda L: \tau \text{ list. } \text{fold}_\tau \text{list injr} (x, L)
 \]

- **A list length function**
 \[
 \text{length}_\tau = \lambda L: \tau \text{ list.} \\
 \text{case } (\text{unfold}_\tau \text{list } L) \text{ of } \text{ injl } x \Rightarrow 0 \\
 \text{ | injr } y \Rightarrow 1 + \text{length}_\tau (\text{snd } y)
 \]

- (At home ...) Verify that
 - \(\text{nil}_\tau : \tau \text{ list} \)
 - \(\text{cons}_\tau : \tau \rightarrow \tau \text{ list} \rightarrow \tau \text{ list} \)
 - \(\text{length}_\tau : \tau \text{ list} \rightarrow \text{int} \)
Type Rules for Recursive Types

\[\Gamma \vdash e : \mu t.\tau \]

\[\Gamma \vdash \text{unfold}_{\mu t.\tau} \ e : [\mu t.\tau/t]\tau \]

\[\Gamma \vdash e : [\mu t.\tau/t]\tau \]

\[\Gamma \vdash \text{fold}_{\mu t.\tau} \ e : \mu t.\tau \]

- The typing rules are syntax directed
- Often, for syntactic simplicity, the fold and unfold operators are omitted
 - This makes type checking somewhat harder
Dynamics of Recursive Types

• We add a new form of values
 \[v ::= \ldots \mid \text{fold}_{\mu t.\tau} v \]
 - The purpose of fold is to ensure that the value has the recursive type and not its unfolding

• The evaluation rules:

\[
\begin{align*}
 e \Downarrow v & \quad \frac{}{\text{fold}_{\mu t.\tau} e \Downarrow \text{fold}_{\mu t.\tau} v} \\
 e \Downarrow \text{fold}_{\mu t.\tau} v & \quad \frac{}{\text{unfold}_{\mu t.\tau} e \Downarrow v}
\end{align*}
\]

• The folding annotations are for type checking only
• They can be dropped after type checking
Recursive Types in ML

- The language ML uses a simple syntactic trick to avoid having to write the explicit fold and unfold.
- In ML recursive types are bundled with union types:
 \[\text{type } t = C_1 \text{ of } \tau_1 \mid C_2 \text{ of } \tau_2 \mid \ldots \mid C_n \text{ of } \tau_n \]
 (* \(t\) can appear in \(\tau_i\)*)
 - e.g., “type intlist = Nil of unit \mid Cons of int \ast intlist”
- When the programmer writes \(\text{Cons (5, l)}\)
 - the compiler treats it as \(\text{fold}_{\text{intlist}} (\text{injr (5, l)})\)
- When the programmer writes
 - case \(e\) of Nil ⇒ \ldots \mid Cons (h, t) ⇒ \ldots
 the compiler treats it as
 - case unfold_{intlist} e of Nil ⇒ \ldots \mid Cons (h,t) ⇒ \ldots
Encoding Call-by-Value \(\lambda \)-calculus in \(F_1^\mu \)

- So far, \(F_1 \) was so weak that we could not encode non-terminating computations
 - Cannot encode recursion
 - Cannot write the \(\lambda x.x \ x \) (self-application)

- The addition of recursive types makes typed \(\lambda \)-calculus as expressive as untyped \(\lambda \)-calculus!

- We could show a conversion algorithm from call-by-value untyped \(\lambda \)-calculus to call-by-value \(F_1^\mu \)
Untyped Programming in F_{1}^{μ}

- We write \underline{e} for the conversion of the term e to F_{1}^{μ}
 - The type of \underline{e} is $V = \mu t. \ t \rightarrow t$
- The conversion rules
 \[
 x = x \\
 \lambda x. e = \text{fold}_V (\lambda x:V. \ e) \\
 e_1 e_2 = (\text{unfold}_V e_1) e_2
 \]
- Verify that
 - $\vdash e : V$
 - $e \Downarrow v$ if and only if $\underline{e} \Downarrow v$
- We can express non-terminating computation
 $D = (\text{unfold}_V (\text{fold}_V (\lambda x:V. (\text{unfold}_V x) x))) (\text{fold}_V (\lambda x:V. (\text{unfold}_V x) x)))$
 or, equivalently
 $D = (\lambda x:V. (\text{unfold}_V x) x) (\text{fold}_V (\lambda x:V. (\text{unfold}_V x) x)))$
Homework

• Read Goodenough article
 - Optional, perspectives on exceptions
• Work on your projects!