LR Parsing

Table Construction
Outline

• Review of bottom-up parsing

• Computing the parsing DFA
 - Closures, LR(1) Items, States
 - Transitions

• Using parser generators
 - Handling Conflicts
In One Slide

- An **LR(1) parsing table** can be constructed automatically from a CFG. An **LR(1) item** is a pair made up of a **production** and a **lookahead token**; it represents a possible parser **context**. After we **extend** LR(1) items by **closing** them they become LR(1) **DFA states**. Grammars can have **shift/reduce** or **reduce/reduce conflicts**. You can fix most conflicts with **precedence and associativity declarations**. **LALR(1) tables** are formed from LR(1) tables by **merging states** with similar **cores**.
Bottom-up Parsing (Review)

- A bottom-up parser rewrites the input string to the start symbol.
- The state of the parser is described as \(\alpha \rightarrow \gamma \).
 - \(\alpha \) is a stack of terminals and non-terminals.
 - \(\gamma \) is the string of terminals not yet examined.
- Initially: \(\rightarrow x_1 x_2 \ldots x_n \).
Shift and Reduce Actions (Review)

• Recall the CFG: $E \rightarrow \text{int} \mid E + (E)$

• A bottom-up parser uses two kinds of actions:

 • **Shift** pushes a terminal from input on the stack

 $E + (\uparrow \text{int}) \Rightarrow E + (\text{int} \uparrow)$

 • **Reduce** pops 0 or more symbols off of the stack (production RHS) and pushes a non-terminal on the stack (production LHS)

 $E + (E + (E) \uparrow) \Rightarrow E +(E \uparrow)$
Key Issue: When to Shift or Reduce?

- Idea: use a finite automaton (DFA) to decide when to shift or reduce
 - The input is the stack
 - The language consists of terminals and non-terminals

- We run the DFA on the stack and we examine the resulting state X and the token tok after \rightarrow
 - If X has a transition labeled tok then shift
 - If X is labeled with “$A \rightarrow \beta$ on tok” then reduce
LR(1) Parsing. An Example

E → int

\[E \rightarrow \text{int} \]

\[E \rightarrow \text{int} + (\text{int}) + (\text{int}) \]

\[\text{shift} \]

\[\text{int} \rightarrow \text{int} + (\text{int}) + (\text{int}) \]

\[\text{E} \rightarrow \text{int} \]

\[E \rightarrow \text{int} + (\text{int}) + (\text{int}) \]

\[\text{shift(x3)} \]

\[E \rightarrow \text{int} + (\text{int}) + (\text{int}) \]

\[\text{shift} \]

\[E \rightarrow \text{int} + (\text{int}) + (\text{int}) \]

\[\text{shift(x3)} \]

\[E \rightarrow \text{E} + (\text{E}) \]

\[\text{E} \rightarrow \text{E} + (\text{E}) \]

\[\text{shift} \]

\[E \rightarrow \text{E} + (\text{E}) \]

\[\text{shift} \]

\[E \rightarrow \text{E} + (\text{E}) \]

\[\text{accept} \]
End of review
Key Issue: How is the DFA Constructed?

- The **stack** describes the **context** of the parse
 - What non-terminal we are looking for
 - What production rhs we are looking for
 - What we have seen so far from the rhs
Three hours later, you can finally parse $E \rightarrow E + E \mid \text{int}$.
Parsing Contexts

• Consider the state:

\[
\begin{align*}
E & \\
\text{int} + (\text{int }) + (\text{int }) & \\
\end{align*}
\]

- The stack is

\[
E + (\text{int }) + (\text{int })
\]

• **Context:**
 - We are looking for an \(E \rightarrow E + (\bullet E) \)
 - Have have seen \(E + (\) from the right-hand side
 - We are also looking for \(E \rightarrow \bullet \text{int or } E \rightarrow \bullet E + (E) \)
 - Have seen nothing from the right-hand side

• **One DFA state must thus describe several contexts**
LR(1) Items

• An LR(1) item is a pair:
 \[X \rightarrow \alpha \cdot \beta, \ a \]
 - \(X \rightarrow \alpha \beta \) is a production
 - \(a \) is a terminal (the lookahead terminal)
 - LR(1) means 1 lookahead terminal

• \([X \rightarrow \alpha \cdot \beta, \ a]\) describes a context of the parser
 - We are trying to find an \(X \) followed by an \(a \), and
 - We have \(\alpha \) already on top of the stack
 - Thus we need to see next a prefix derived from \(\beta a \)
Note

- The symbol ▶ was used before to separate the stack from the rest of input
 - $\alpha ▶ \gamma$, where α is the stack and γ is the remaining string of terminals
- In LR(1) items • is used to mark a prefix of a production rhs:
 \[X \rightarrow \alpha\bullet\beta, a \]
 - Here β might contain non-terminals as well
- In both case the stack is on the left
Convention

- We add to our grammar a fresh new start symbol S and a production $S \rightarrow E$
 - Where E is the old start symbol
 - No need to do this if E had only one production

- The **initial parsing context** contains:
 $$ S \rightarrow \bullet E, \$ $$
 - Trying to find an S as a string derived from $E\$$
 - The stack is empty
LR(1) Items (Cont.)

- In context containing
 \[E \rightarrow E + \bullet \ (E) , + \]
 - If (follows then we can perform a shift to context containing
 \[E \rightarrow E + (\bullet E) , + \]

- In context containing
 \[E \rightarrow E + \ (E) \bullet , + \]
 - We can perform a reduction with \[E \rightarrow E + (E) \]
 - But only if a + follows
LR(1) Items (Cont.)

• Consider a context with the item

\[E \rightarrow E + (\bullet E) , + \]

• We expect next a string derived from \(E) + \)

• There are two productions for \(E \)

\[E \rightarrow \text{int} \quad \text{and} \quad E \rightarrow E + (E) \]

• We describe this by extending the context with two more items:

\[E \rightarrow \bullet \text{int},) \]

\[E \rightarrow \bullet E + (E) ,) \]
The Closure Operation

• The operation of extending the context with items is called the closure operation

\[
\text{Closure(Items)} = \\
\text{repeat} \\
\quad \text{for each } [X \rightarrow \alpha \bullet Y\beta, a] \text{ in Items} \\
\quad \text{for each production } Y \rightarrow \gamma \\
\quad \text{for each } b \in \text{First}(\beta a) \\
\quad \text{add } [Y \rightarrow \bullet \gamma, b] \text{ to Items} \\
\text{until Items is unchanged}
\]
Constructing the Parsing DFA (1)

• Construct the start context:

$$\text{Closure}([S \rightarrow \bullet E, \$]) =$$

- $S \rightarrow \bullet E, \$
- $E \rightarrow \bullet E+(E), \$
- $E \rightarrow \bullet \text{int}, \$
- $E \rightarrow \bullet E+(E), +$
- $E \rightarrow \bullet \text{int}, +$

• We abbreviate as:

$$S \rightarrow \bullet E, \$
E \rightarrow \bullet E+(E), \$/+
E \rightarrow \bullet \text{int}, \$/+$$
PLANNING

You... have a plan, right?
Constructing the Parsing DFA (2)

• An LR(1) DFA state is a closed set of LR(1) items
 - This means that we performed Closure

• The start state contains \([S \rightarrow \bullet E, \$]\)

• A state that contains \([X \rightarrow \alpha \bullet, \ b]\) is labeled with “reduce with \(X \rightarrow \alpha\) on \(b\)”

• And now the transitions ...
The DFA Transitions

- A state “State” that contains $[X \rightarrow \alpha \cdot y\beta, \ b]$ has a transition labeled y to a state that contains the items “Transition(State, y)”
 - y can be a terminal or a non-terminal

Transition(State, y) =

$\text{Items} \leftarrow \emptyset$

for each $[X \rightarrow \alpha \cdot y\beta, \ b] \in \text{State}$

 add $[X \rightarrow \alpha y\cdot \beta, \ b]$ to Items

return Closure(Items)
LR(1) DFA Construction Example

S → • E, $
E → • E+(E), $/+
E → • int, $/+
LR(1) DFA Construction Example

S → E, $
E → E+(E), $/+
E → int, $/+
LR(1) DFA Construction Example

S → •E, $
E → •E+(E), $/+
E → •int, $/+

E → int•, $/+
LR(1) DFA Construction Example

\[
\begin{align*}
S &\rightarrow \cdot E, \$
E &\rightarrow \cdot E+(E), \$/+
E &\rightarrow \cdot \text{int}, \$/+
\end{align*}
\]
LR(1) DFA Construction Example

S → •E, $
E → •E+(E), $/+
E → •int, $/+

E → int•, $/+

E → int on $, +

S → E•, $
E → E•+(E), $/+
LR(1) DFA Construction Example

S → \bullet E, $
E → \bullet E+(E), $/+
E → \bullet \text{int}, $/+

S → E \bullet, $
E → E \bullet+(E), $/+

E → \text{int} \bullet, $/+
E → \text{int} on $, +

accept on $
LR(1) DFA Construction Example

S → •E, $
E → •E+(E), $/+
E → •int, $/+ \hspace{2cm} 0
S → E•, $
E → E•+(E), $/+ \hspace{2cm} 2
E → int•, $/+ \hspace{2cm} 1
E → E+• (E), $/+ \hspace{2cm} 3

int
+
accept

on $

E → int

on $, +
LR(1) DFA Construction Example

S → E, $
E → E+(E), $/+
E → int, $/+

E → int, $/+
S → E•, $
E → E+(E), $/+

E → E+(E), $/+

E → int, $/+

accept on $
LR(1) DFA Construction Example

S → •E, $
E → •E+(E), $/+ 0
E → •int, $/+ int

E → int•, $/+ 1
E → E+• (E), $/+ +
E → int, $/+ (3

S → E•, $
E → E•+(E), $/+ 2

accept on $

E → E+(•E), $/+ 4
E → •E+(E),)/+
LR(1) DFA Construction Example

\[S \rightarrow \mathit{E}, \mathit{$} \]
\[E \rightarrow \mathit{E}+(\mathit{E}), \mathit{$}/+ \]
\[E \rightarrow \mathit{\mathit{int}}, \mathit{$}/+ \]

\[S \rightarrow \mathit{E}, \mathit{$} \]
\[E \rightarrow \mathit{E}+(\mathit{E}), \mathit{$}/+ \]

0
\[E \rightarrow \mathit{\mathit{int}}, \mathit{$}/+ \]
\[E \rightarrow \mathit{\mathit{E}+(\mathit{E})}, \mathit{$}/+ \]

1
\[E \rightarrow \mathit{\mathit{E}+(\mathit{E})}, \mathit{$}/+ \]

2
\[S \rightarrow \mathit{\mathit{E}}, \mathit{$} \]
\[E \rightarrow \mathit{\mathit{E}+(\mathit{E})}, \mathit{$}/+ \]

3
\[E \rightarrow \mathit{\mathit{E}+(\mathit{E})}, \mathit{$}/+ \]

4
\[E \rightarrow \mathit{\mathit{E}+(\mathit{E})}, \mathit{)}+/ \]
\[E \rightarrow \mathit{\mathit{\mathit{int}, }}, \mathit{)}+/ \]

accept on \$
LR(1) DFA Construction Example

S → •E, $
E → •E+(E), $/+
E → •int, $/+

S → E•, $
E → E•+(E), $/+

E → int•, $/+
E → int, $/+

E → E+(E), $/+
E → E+(•E), $/+
E → •int,)/+

E → E+(E),)/+
E → •int,)/+

E → int•,)/+
E → int, $/+

accept on $
E → int on $, +

2
0
1
3
4
5

states
production rules
transitions
accept states

LR(1) DFA Construction Example

S → •E, $
E → •E+(E), $/+
E → •int, $/+

S → E•, $
E → E•+(E), $/+

E → •int•, $/+
E → •E+(E), $/+
E → •int, $/+

E → •E+(E), $/+
E → •E+(E),)/+
E → •int,)/+

E → int•,)/+
E → int on), +
LR(1) DFA Construction Example

S → •E, $
E → •E+(E), $/+
E → •int, $/+

S → E•, $
E → E•+(E), $/+

E → E•+$/+
E → •int+$/+

E → E•+(E), $/+
E → •int+$/+

E → E•+(E), $/+
E → •int+$/+

E → E•+(E), $/+
E → •int+$/+

E → •int+$/+
E → int+$/+

and so on...
This post-apocalyptic 1984 animated film by Studio Ghibli features a peace-loving, wind-riding princess who attempts to understand the apparently-evil insects and spreading fungi of her world while averting a war.
• The 1995 comedy film Clueless starring Alicia Silverstone was based on this Jane Austen novel.
Q: Books (736 / 842)

• Give the last word in 2 of the following 4 young adult book titles:
 - Beverly Cleary Ramona Quimby, Age
 - Judy Blume's Tales of a Fourth Grade
 - Lynne Reid Banks's The Indian in the
 - Lloyd Alexander's The High
In this 1982 arcade game features lance-wielding knights mounted on giant flying birds and dueling over a pit of lava. Destroying an enemy knight required ramming it such that your lance was higher than the enemy's.
LR Parsing Tables. Notes

- Parsing tables (= the DFA) can be constructed **automatically** for a CFG
 - “The tables which cannot be constructed are constructed automatically in response to a CFG input. You asked for a miracle, Theo. I give you the L-R-1.” - Hans Gruber, *Die Hard*

- But we still need to understand the construction to work with parser generators
 - e.g., they report errors in terms of sets of items

- What kind of errors can we expect?
PARTY CONFLICT

Sometimes, you should back down.
Shift/Reduce Conflicts

• If a DFA state contains both
 \[X \rightarrow \alpha a \beta, b \] and \[Y \rightarrow \gamma \dot{\,}, a \]

• Then on input “a” we could either
 - Shift into state \[X \rightarrow \alpha a \beta, b \], or
 - Reduce with \[Y \rightarrow \gamma \]

• This is called a **shift-reduce conflict**
Shift/Reduce Conflicts

- Typically due to *ambiguities in the grammar*
- Classic example: the dangling else

 \[S \rightarrow \text{if } E \text{ then } S \mid \text{if } E \text{ then } S \text{ else } S \mid \text{OTHER} \]

- Will have DFA state containing

 \[[S \rightarrow \text{if } E \text{ then } S\bullet, \text{ else}] \]

 \[[S \rightarrow \text{if } E \text{ then } S\bullet \text{ else } S, \text{ x}] \]

- If *else* follows then we can shift or reduce

- Default (bison, CUP, etc.) is to shift

 - Default behavior is as needed in this case
More Shift/Reduce Conflicts

• Consider the ambiguous grammar

\[E \rightarrow E + E \mid E \times E \mid \text{int} \]

• We will have the states containing

\[[E \rightarrow E \times \bullet E, +] \quad [E \rightarrow E \times E \bullet, +] \]
\[[E \rightarrow \bullet E + E, +] \Rightarrow^E [E \rightarrow E \bullet + E, +] \]
\[\ldots \quad \ldots \]

• Again we have a shift/reduce on input +
 - We need to reduce (* binds more tightly than +)
 - Solution: declare the precedence of * and +
More Shift/Reduce Conflicts

- In bison declare **precedence** and **associativity**:

  ```
  %left +
  %left * // high precedence
  ```

- **Precedence** of a rule = that of its last terminal
 - See bison manual for ways to override this default

- Resolve shift/reduce conflict with a **shift** if:
 - no precedence declared for either rule or terminal
 - input terminal has higher precedence than the rule
 - the precedences are the same and right associative
Using Precedence to Solve S/R Conflicts

• Back to our example:

\[
\begin{align*}
[E \rightarrow E \cdot E, +] & \quad [E \rightarrow E \cdot E \cdot, +] \\
[E \rightarrow E \cdot E + E, +] & \Rightarrow^E [E \rightarrow E \cdot + E, +] \\
\cdots & \quad \cdots
\end{align*}
\]

• Will choose **reduce** on input + because precedence of rule \(E \rightarrow E \cdot E\) is higher than of terminal +
Using Precedence to Solve S/R Conflicts

• Same grammar as before

\[E \rightarrow E + E \mid E \ast E \mid \text{int} \]

• We will also have the states

\[
\begin{align*}
[E \rightarrow E + \bullet E, +] & \quad [E \rightarrow E + E \bullet, +] \\
[E \rightarrow \bullet E + E, +] & \Rightarrow^E [E \rightarrow E \bullet + E, +] \\
\vdots & \quad \vdots
\end{align*}
\]

• Now we also have a shift/reduce on input +
 - We choose reduce because \(E \rightarrow E + E \) and + have the same precedence and + is left-associative
Using Precedence to Solve S/R Conflicts

• Back to our dangling else example

 \[S \rightarrow \text{if } E \text{ then } S, \text{ else} \]

 \[S \rightarrow \text{if } E \text{ then } S\bullet \text{ else } S, \ x \]

• Can eliminate conflict by declaring \textit{else} with higher precedence than \textit{then}

 - Or just rely on the default shift action

• But this starts to look like “hacking the parser”

• Avoid overuse of precedence declarations or you’ll end with unexpected parse trees

 - The kiss of death ...
Reduce/Reduce Conflicts

- If a DFA state contains both
 \[X \to \alpha\bullet, a \] and \[Y \to \beta\bullet, a \]
 - Then on input “a” we don’t know which production to reduce

- This is called a **reduce/reduce conflict**
Reduce/Reduce Conflicts

- Usually due to **gross ambiguity** in the grammar
- Example: a sequence of identifiers
 \[S \to \varepsilon \mid id \mid id \, S \]

- There are **two parse trees** for the string **id**
 \[S \to id \]
 \[S \to id \, S \to id \]

- How does this confuse the parser?
More on Reduce/Reduce Conflicts

- Consider the states

\[
\begin{align*}
[S' \rightarrow \cdot S, \ $] & \quad [S \rightarrow \cdot S, \ $] \\
[S \rightarrow \cdot, \ $] & \quad \Rightarrow_{\text{id}} \quad [S \rightarrow \cdot, \ $] \\
[S \rightarrow \cdot \ \text{id}, \ $] & \quad [S \rightarrow \cdot \ \text{id}, \ $] \\
[S \rightarrow \cdot \ \text{id} \ S, \ $] & \quad [S \rightarrow \cdot \ \text{id} \ S, \ $]
\end{align*}
\]

- Reduce/reduce conflict on input $\$

\[
\begin{align*}
S' \rightarrow S \rightarrow \text{id} \\
S' \rightarrow S \rightarrow \text{id} \ S \rightarrow \text{id}
\end{align*}
\]

- Better rewrite the grammar: $S \rightarrow \varepsilon \mid \text{id} \ S$
Can’s someone learn this for me?

No, you can't have a neural network.
Using Parser Generators

- **Parser generators** construct the parsing DFA given a CFG
 - Use precedence declarations and default conventions to resolve conflicts
 - The parser algorithm is the same for all grammars (and is provided as a library function)

- But most parser generators do not construct the DFA as described before
 - Why might that be?
Using Parser Generators

• **Parser generators** construct the parsing DFA given a CFG
 - Use precedence declarations and default conventions to *resolve conflicts*
 - The **parser algorithm is the same** for all grammars (and is provided as a library function)

• But most parser generators do not construct the DFA as described before
 - Because the LR(1) parsing DFA has 1000s of states even for a simple language
LR(1) Parsing Tables are Big

- But many states are similar, e.g.

\[
\begin{align*}
E &\rightarrow \text{int}\bullet, \$, + & E &\rightarrow \text{int} & 1 \\
E &\rightarrow \text{int} & \text{on } \$, + & & E &\rightarrow \text{int} & 5 \\
E &\rightarrow \text{int}\bullet,)/+ & \text{and} & & E &\rightarrow \text{int} & \text{on }), +
\end{align*}
\]

- Idea: **merge** the DFA states whose items differ only in the lookahead tokens
 - We say that such states have the same **core**

- We obtain

\[
\begin{align*}
E &\rightarrow \text{int}\bullet, \$, + & E &\rightarrow \text{int} & 1'
\end{align*}
\]
The Core of a Set of LR Items

• Definition: The core of a set of LR items is the set of first components
 - Without the lookahead terminals

• Example: the core of

\[
\{ [X \rightarrow \alpha\cdot\beta, b], [Y \rightarrow \gamma\cdot\delta, d]\}
\]

is

\[
\{X \rightarrow \alpha\cdot\beta, Y \rightarrow \gamma\cdot\delta\}
\]
LALR States

• Consider for example the LR(1) states
 \[
 \begin{align*}
 &\{[X \rightarrow \alpha\cdot, a], [Y \rightarrow \beta\cdot, c]\} \\
 &\{[X \rightarrow \alpha\cdot, b], [Y \rightarrow \beta\cdot, d]\}
 \end{align*}
 \]

• They have the **same core** and can be merged

• And the merged state contains:
 \[
 \{[X \rightarrow \alpha\cdot, a/b], [Y \rightarrow \beta\cdot, c/d]\}
 \]

• These are called **LALR(1)** states
 - Stands for **LookAhead LR**
 - Typically 10x fewer LALR(1) states than LR(1)
LALR(1) DFA

• **Repeat** until all states have distinct core
 - Choose two distinct states with same core
 - Merge the states by creating a new one with the union of all the items
 - Point edges from predecessors to new state
 - New state points to all the previous successors
Example LALR(1) to LR(1)
The LALR Parser Can Have Conflicts

• Consider for example the LR(1) states
 \[
 \{[X \rightarrow \alpha \cdot, a], [Y \rightarrow \beta \cdot, b]\}
 \{[X \rightarrow \alpha \cdot, b], [Y \rightarrow \beta \cdot, a]\}
 \]

• And the merged LALR(1) state
 \[
 \{[X \rightarrow \alpha \cdot, a/b], [Y \rightarrow \beta \cdot, a/b]\}
 \]

• Has a new reduce-reduce conflict

• In practice such cases are rare
LALR vs. LR Parsing

• LALR languages are not natural
 - They are an efficiency hack on LR languages

• Any “reasonable” programming language has a LALR(1) grammar
 - Java and C++ are presumed unreasonable …

• LALR(1) has become a standard for programming languages and for parser generators
A Hierarchy of Grammar Classes

From Andrew Appel, "Modern Compiler Implementation in Java"
Notes on Parsing

• Parsing
 - A solid foundation: context-free grammars
 - A simple parser: LL(1)
 - A more powerful parser: LR(1)
 - An efficiency hack: LALR(1)
 - LALR(1) parser generators

• Now we move on to semantic analysis
Take a bow, you survived!
Supplement to LR Parsing

Strange Reduce/Reduce Conflicts Due to LALR Conversion
(from the bison manual)
Strange Reduce/Reduce Conflicts

- Consider the grammar

\[
\begin{align*}
S & \rightarrow P \ R \ , \\
NL & \rightarrow N \ | \ N \ , \ NL \\
P & \rightarrow T \ | \ NL : T \\
R & \rightarrow T \ | \ N : T \\
N & \rightarrow \text{id} \\
T & \rightarrow \text{id}
\end{align*}
\]

- **P** - parameters specification
- **R** - result specification
- **N** - a parameter or result name
- **T** - a type name
- **NL** - a list of names
Strange Reduce/Reduce Conflicts

• In P an id is a
 - N when followed by $,$ or $:$
 - T when followed by id

• In R an id is a
 - N when followed by $:$
 - T when followed by $,$

• This is an LR(1) grammar.

• But it is not LALR(1). Why?
 - For obscure reasons
A Few LR(1) States

P → • T id
P → • NL : T id
NL → • N :
NL → • N, NL :
N → • id :
N → • id ,
T → • id id

R → • T ,
R → • N : T ,
T → • id ,
N → • id :

T → id • id
N → id • :
N → id • ,

T → id • id /
N → id • :/

LALR reduce/reduce conflict on " , "
LALR merge

#67
What Happened?

- Two distinct states were confused because they have the same core
- Fix: add dummy productions to distinguish the two confused states
- E.g., add

 \[
 R \rightarrow \text{id bogus}
 \]

 - \text{bogus} is a terminal not used by the lexer
 - This production will never be used during parsing
 - But it distinguishes \text{R} from \text{P}
A Few LR(1) States After Fix

Different cores \Rightarrow no LALR merging
Homework

- Today: WA2 Was Due
- Thursday: Chapter 3.1 - 3.6
 - Optional Wikipedia Article
- Tuesday Sep 29 - Midterm 1 in Class
- Wednesday: PA3 due
 - Parsing!
- Thursday: WA3 due