Parking For Drive-Thru Service Only

More Static Semantics

Thank You
Midterm 1 Results

• Score range 63.5 to 102, average 88.75
 - I am quite pleased.

• Answer Key available on Web

• Toughest Problems:
 - LL Parsing
 - LR Parsing
Midterm 1 Suggestions

- class time @ 5pm; the time it is scheduled
- sometimes pace is fast like for Fold
- time commitment but I'm taking 5 credits
 - the workload; disproportionate amount of work compared to other classes (but you warned us :-))
 - length of PAs; staying up late to finish PAs
- theory and greek letters x2
- not getting candy; getting mints FML
- being underground
- coding in C; semicolons in Cool; Ocaml error reporting; Ocaml
- midterm; the tests
- can't think of anything
- material that is “implied prerequisites”
- slide examples are verbose and hard to follow
- “vaguely-specified” PAs
- cold-calling

Let's vote!
One-Slide Summary

• **Typing rules** formalize the semantics checks necessary to validate a program. Well-typed programs do not go wrong.

• **Subtyping** relations (\leq) and **least-upper-bounds** (lub) are powerful tools for type-checking dynamic dispatch.

• We will use \texttt{SELF_TYPE}_C for “C or any subtype of C”. It will show off the subtlety of type systems and allow us to check methods that return self objects.
Lecture Outline

• Typing Rules

• Dispatch Rules
 - Static
 - Dynamic

• SELF_TYPE
Assignment

What is this thing? What’s $\vdash\? O\? \leq\?$

\[
O(id) = T_0 \\
O \vdash e_1 : T_1 \\
T_1 \leq T_0 \quad \Rightarrow \quad O \vdash id \leftarrow e_1 : T_1
\] [Assign]
Initialized Attributes

- Let $O_C(x) = T$ for all attributes $x:T$ in class C
 - O_C represents the class-wide scope
 - we “preload” the environment O with all attributes
- Attribute initialization is similar to let, except for the scope of names

\[
O_C(id) = T_0 \\
O_C \vdash e_1 : T_1 \\
T_1 \leq T_0 \\
\frac{O_C \vdash id : T_0 \leftarrow e_1 ;}{[Attr-Init]}
\]
If-Then-Else

- Consider: \(\text{if } e_0 \text{ then } e_1 \text{ else } e_2 \text{ fi} \)
- The result can be either \(e_1 \) or \(e_2 \)
- The dynamic type is either \(e_1 \)'s or \(e_2 \)'s type
- The best we can do statically is the smallest supertype larger than the type of \(e_1 \) and \(e_2 \)
If-Then-Else example

• Consider the class hierarchy

```
   P
  /   \
A     B
```

• ... and the expression

```
if ... then new A else new B fi
```

• Its type should allow for the dynamic type to be both A or B
 - Smallest supertype is P
Least Upper Bounds

- Define: \(\text{lub}(X,Y) \) to be the least upper bound of \(X \) and \(Y \). \(\text{lub}(X,Y) \) is \(Z \) if
 - \(X \leq Z \land Y \leq Z \)
 - \(Z \) is an upper bound
 - \(X \leq Z' \land Y \leq Z' \Rightarrow Z \leq Z' \)
 - \(Z \) is least among upper bounds

- In Cool, the least upper bound of two types is their least common ancestor in the inheritance tree
If-Then-Else Revisited

\[
\begin{align*}
O & \leftarrow e_0 : \text{Bool} \\
O & \leftarrow e_1 : T_1 \\
O & \leftarrow e_2 : T_2 \\
O & \leftarrow \text{if } e_0 \text{ then } e_1 \text{ else } e_2 \text{ fi} : \text{lub}(T_1, T_2)
\end{align*}
\]

[If-Then-Else]
Case

• The rule for `case` expressions takes a lub over all branches

\[
\begin{align*}
O &\vdash e_0 : T_0 \\
O[T_1/x_1] &\vdash e_1 : T_1' \\
\quad &\quad \ldots \\
O[T_n/x_n] &\vdash e_n : T_n'
\end{align*}
\]

\[
\text{[Case]} \quad O \vdash \text{case } e_0 \text{ of } x_1 : T_1 \Rightarrow e_1; \\
\quad \ldots; x_n : T_n \Rightarrow e_n; \text{ esac} : \text{lub}(T_1', \ldots, T_n')
\]
Method Dispatch

• There is a problem with type checking method calls:

\[O \vdash e_0 : T_0 \]
\[O \vdash e_1 : T_1 \]
\[\quad \vdash \quad \]
\[O \vdash e_n : T_n \]

\[
\begin{array}{c}
O \vdash e_0.f(e_1,\ldots,e_n) : ? \\
\hline
\end{array}
\]

• We need information about the formal parameters and return type of \(f \)
Notes on Dispatch

• In Cool, method and object identifiers live in different **name spaces**
 - A method `foo` and an object `foo` can coexist in the same scope

• In the type rules, this is reflected by a separate mapping \(M \) for method signatures:

 \[
 M(C,f) = (T_1, \ldots, T_n, T_{n+1})
 \]

 means in class \(C \) there is a method \(f \)

 \[
 f(x_1:T_1, \ldots, x_n:T_n): T_{n+1}
 \]
An Extended Typing Judgment

- Now we have *two* environments: O and M

- The form of the typing judgment is

 \[O, M \vdash e : T \]

read as: “with the assumption that the object
identifiers have types as given by O and the
method identifiers have signatures as given
by M, the expression e has type T”
The Method Environment

• The method environment must be added to all rules

• In most cases, M is passed down but not actually used
 - Example of a rule that does not use M:
 \[
 O, M \vdash e_1 : T_1 \\
 O, M \vdash e_2 : T_2 \\
 \text{[Add]} \\
 O, M \vdash e_1 + e_2 : \text{Int}
 \]
 - Only the dispatch rules uses M
The Dispatch Rule Revisited

\[O, M \vdash e_0 : T_0 \]
\[O, M \vdash e_1 : T_1 \]
\[\vdots \]
\[O, M \vdash e_n : T_n \]
\[M(T_0, f) = (T_1', \ldots, T_n', T_{n+1}') \]
\[T_i \leq T_i' \quad (\text{for } 1 \leq i \leq n) \]

\[O, M \vdash e_0.f(e_1, \ldots, e_n) : T_{n+1}' \]
Static Dispatch

- **Static dispatch** is a variation on normal dispatch

- The method is found in the class *explicitly named* by the programmer (not via e_0)

- The inferred type of the dispatch expression must *conform to the specified type*
Static Dispatch (Cont.)

\[\text{O, M} \vdash e_0 : T_0 \]
\[\text{O, M} \vdash e_1 : T_1 \]
\[\ldots \]
\[\text{O, M} \vdash e_n : T_n \]

\[T_0 \leq T \]

\[M(T, f) = (T_1', \ldots, T_n', T_{n+1}') \]

\[T_i \leq T_i' \quad \text{(for } 1 \leq i \leq n) \]

\[\text{O, M} \vdash e_0@T.f(e_1, \ldots, e_n) : T_{n+1}' \]

[StaticDispatch]
How should we handle SELF_TYPE?
Flexibility vs. Soundness

- Recall that type systems have two conflicting goals:
 - Give flexibility to the programmer
 - Prevent valid programs from “going wrong”
 - Milner, 1981: “Well-typed programs do not go wrong”

- An active line of research is in the area of inventing more flexible type systems while preserving soundness
Dynamic And Static Types

• The **dynamic type** of an object is ?
• The **static type** of an expression is ?
• You tell me!
Dynamic And Static Types

- The **dynamic type** of an object is the class C that is used in the “new C” expression that created it
 - A run-time notion
 - Even languages that are not statically typed have the notion of dynamic type

- The **static type** of an expression is a notation that captures all possible dynamic types the expression could take
 - A compile-time notion
Soundness

Soundness theorem for the Cool type system:

\[\forall E. \quad \text{dynamic_type}(E) \leq \text{static_type}(E) \]

Why is this OK?

- All operations that can be used on an object of type \(C \) can also be used on an object of type \(C' \leq C \)
 - Such as fetching the value of an attribute
 - Or invoking a method on the object
- Subclasses can only add attributes or methods
- Methods can be redefined but with same type!
An Example

- Class **Count** incorporates a counter
- The inc method works for any subclass

```java
class Count {
    i : int ← 0;
    inc () : Count {
        i ← i + 1;
        self;
    }
};

// But there is disaster lurking in the type system!
```
Continuing Example

• Consider a subclass `Stock` of `Count`

```java
class Stock inherits Count {
    name() : String { …}; -- name of item
};
```

• And the following use of `Stock`:

```java
class Main {
    a : Stock ← (new Stock).inc ();
    … a.name() …
};
```

Type checking error!
Post-Mortem

- `(new Stock).inc()` has dynamic type `Stock`
- So it is legitimate to write

 \[
 a : \text{Stock} \leftarrow (\text{new Stock}).inc()
 \]

- But this is not well-typed

 \[
 (\text{new Stock}).inc() \text{ has static type } \text{Count}
 \]
- The type checker “loses” type information
- This makes inheriting `inc` useless
 - So, we must redefine `inc` for each of the subclasses, with a specialized return type
We've been pwned!

ONLINE GAMING
Get your excuses ready beforehand.
You're going to need them.
I Need A Hero!

Type Systems
One tool. One million uses.
SELF_TYPE to the Rescue

- We will extend the type system

Insight:
- `inc` returns "self"
- Therefore the return value has same type as "self"
- Which could be `Count` or any subtype of `Count`!
- In the case of `(new Stock).inc()` the type is `Stock`

- We introduce the keyword `SELF_TYPE` to use for the return value of such functions
 - We will also modify the typing rules to handle `SELF_TYPE`
SELF_TYPE to the Rescue (2)

- SELF_TYPE allows the return type of inc to change when inc is inherited
- Modify the declaration of inc to read

  ```
  inc() : SELF_TYPE { ... }
  ```

- The type checker can now prove:

  ```
  O, M ⊢ (new Count).inc() : Count
  O, M ⊢ (new Stock).inc() : Stock
  ```

- The program from before is now well typed
SELF_TYPE: Binford Tools

• SELF_TYPE is not a dynamic type
• SELF_TYPE is a static type

• It helps the type checker to keep better track of types

• It enables the type checker to accept more correct programs

• In short, having SELF_TYPE increases the expressive power of the type system
SELF_TYPE and Dynamic Types (Example)

• What can be the dynamic type of the object returned by inc?
 - Answer: whatever could be the type of “self”

```plaintext
class A inherits Count { } ;
class B inherits Count { } ;
class C inherits Count { } ;
(inc could be invoked through any of these classes)
```
 - Answer: **Count or any subtype of Count**
SELF_TYPE and Dynamic Types (Example)

• In general, if SELF_TYPE appears textually in the class C as the declared type of E then it denotes the dynamic type of the “self” expression:

\[
dynamic_type(E) = \text{dynamic_type(self)} \subseteq C
\]

• Note: The meaning of SELF_TYPE depends on where it appears
 - We write SELF_TYPE_C to refer to an occurrence of SELF_TYPE in the body of C
Type Checking

• This suggests a typing rule:

 \[\text{SELF_TYPE}_c \leq C \]

• This rule has an important consequence:
 - In type checking it is always safe to replace \(\text{SELF_TYPE}_c \) by \(C \)

• This suggests one way to handle \(\text{SELF_TYPE} \):
 - Replace all occurrences of \(\text{SELF_TYPE}_c \) by \(C \)

• This would be correct but it is like not having \(\text{SELF_TYPE} \) at all (whoops!)
Operations on SELF_TYPE

• Recall the operations on types
 - $T_1 \leq T_2$ T_1 is a subtype of T_2
 - lub(T_1, T_2) the least-upper bound of T_1 and T_2

• We must extend these operations to handle SELF_TYPE

• Might take some time …
This 1983 adventure game designed by Roberta Williams described Sir Graham's attempts to recover the three magical treasures of Daventry and become the next king. It featured a parser for simple textual commands (e.g., "get carrot") and spawned numerous sequels.
Q: Movies (316 / 842)

• Name the star and the 1990 holiday film that features Joe Pesci and Daniel Stern as the "Wet Bandits" and a child, too young to shave, who defends a house.
Q: Books (745 / 842)

• Name the 1965 Frank Herbert sci-fi novel that features sandworms, the house Harkonnen, and the quote "What's in the box? / Pain." It won the Hugo and Nebula awards and is usually considered the best-selling sci-fi novel of all time.
From the 1981 movie *Raiders of the Lost Ark*, give either the protagonist's phobia or composer of the musical score.
Extending \leq

Let T and T' be any types except SELF_TYPE

There are four cases in the definition of \leq

- $\text{SELF_TYPE}_C \leq T$ if $C \leq T$
 - SELF_TYPE_C can be any subtype of C
 - This includes C itself
 - Thus this is the most flexible rule we can allow

- $\text{SELF_TYPE}_C \leq \text{SELF_TYPE}_C$
 - SELF_TYPE_C is the type of the “self” expression
 - In Cool we never need to compare SELF_TYPEs coming from different classes
Extending \(\leq \) (Cont.)

- \(T \leq \text{SELF_TYPE}_C \) always false

 Note: \(\text{SELF_TYPE}_C \) can denote any subtype of \(C \).

- \(T \leq T' \) (according to the rules from before)

Based on these rules we can extend lub ...
Extending lub(T,T’)

Let T and T’ be any types except SELF_TYPE

Again there are four cases:

• \(\text{lub}(\text{SELF} _\text{TYPE}_c, \text{SELF} _\text{TYPE}_c) = \text{SELF} _\text{TYPE}_c \)

• \(\text{lub}(\text{SELF} _\text{TYPE}_c, T) = \text{lub}(C, T) \)

 This is the best we can do because \(\text{SELF} _\text{TYPE}_c \leq C \)

• \(\text{lub}(T, \text{SELF} _\text{TYPE}_c) = \text{lub}(C, T) \)

• \(\text{lub}(T, T’) \) defined as before
Where Can SELF_TYPE Appear in COOL?

- The parser checks that SELF_TYPE appears only where a type is expected
- But SELF_TYPE is not allowed everywhere a type can appear:
 - class T inherits T’ {...}
 - T, T’ cannot be SELF_TYPE
 - Because SELF_TYPE is never a dynamic type
- x : T
 - T can be SELF_TYPE
 - An attribute whose type is SELF_TYPEₙ
Where Can SELF_TYPE Appear in COOL?

1. let x : T in E
 - T can be SELF_TYPE
 - x has type SELF_TYPE_\text{C}

2. new T
 - T can be SELF_TYPE
 - Creates an object of the same type as self
 - m@T(E_1,\ldots,E_n)
 - T cannot be SELF_TYPE
Typing Rules for SELF_TYPE

• Since occurrences of SELFTYPE depend on the enclosing class we need to carry more context during type checking

• New form of the typing judgment:

\[O,M,C \vdash e : T \]

(An expression e occurring in the body of C has static type T given a variable type environment O and method signatures M)
Type Checking Rules

• The next step is to design type rules using `SELF_TYPE` for each language construct.

• Most of the rules remain the same except that `≤` and `lub` are the new ones.

• Example:

\[
\begin{align*}
O(id) &= T_0 \\
O,M,C \vdash e_1 : T_1 \\
T_1 &\leq T_0 \\
\hline
O,M,C \vdash id \leftarrow e_1 : T_1
\end{align*}
\]
What’s Different?

• Recall the old rule for dispatch

\[O, M, C \vdash e_0 : T_0 \]

\[\ldots \]

\[O, M, C \vdash e_n : T_n \]

\[M(T_0, f) = (T_1', \ldots, T_n', T_{n+1}') \]

\[T_{n+1}' \neq \text{SELF_TYPE} \]

\[T_i \leq T_i' \quad 1 \leq i \leq n \]

\[O, M, C \vdash e_0.f(e_1, \ldots, e_n) : T_{n+1}' \]
The Big Rule for SELF_TYPE

- If the return type of the method is `SELF_TYPE` then the type of the dispatch is the type of the dispatch expression:

\[O, M, C \vdash e_0 : T_0 \]

\[\vdash \ldots \]

\[O, M, C \vdash e_n : T_n \]

\[M(T_0, f) = (T_1', \ldots, T_n', \text{SELF_TYPE}) \]

\[T_i \leq T_i' \quad 1 \leq i \leq n \]

\[O, M, C \vdash e_0.f(e_1, \ldots, e_n) : T_0 \]
What’s Different?

• Note this rule handles the Stock example
• Formal parameters cannot be SELF_TYPE
• Actual arguments can be SELF_TYPE
 - The extended \leq relation handles this case
• The type T_0 of the dispatch expression could be SELF_TYPE
 - Which class is used to find the declaration of f?
 - Answer: it is safe to use the class where the dispatch appears
Static Dispatch

- Recall the original rule for static dispatch

\[
\begin{align*}
O,M,C &\vdash e_0 : T_0 \\
\ldots \\
O,M,C &\vdash e_n : T_n \\
T_0 &\leq T \\
M(T, f) &= (T_1', \ldots, T_n', T_{n+1}') \\
T_{n+1}' &\neq \text{SELF_TYPE} \\
T_i &\leq T_i' \quad 1 \leq i \leq n \\
O,M,C &\vdash e_0@T.f(e_1, \ldots, e_n) : T_{n+1}'
\end{align*}
\]
Static Dispatch

- If the return type of the method is `SELF_TYPE` we have:

\[
O,M,C \vdash e_0 : T_0
\]

...

\[
O,M,C \vdash e_n : T_n
\]

\[
T_0 \leq T
\]

\[
M(T, f) = (T_1',...,T_n',SELF_TYPE)
\]

\[
T_i \leq T_i' \quad 1 \leq i \leq n
\]

\[
O,M,C \vdash e_0@T.f(e_1,...,e_n) : T_0
\]
Static Dispatch

• Why is this rule correct?
• If we dispatch a method returning `SELF_TYPE` in class `T`, don’t we get back a `T`?

• No. `SELF_TYPE` is the type of the self parameter, which may be a subtype of the class in which the method body appears
 - Not the class in which the call appears!
• The static dispatch class cannot be `SELF_TYPE`
New Rules

• There are two new rules using SELF_TYPE

\[O,M,C \vdash \text{self : SELF_TYPE}_C \]

\[O,M,C \vdash \text{new SELF_TYPE : SELF_TYPE}_C \]

• There are a number of other places where SELF_TYPE is used
Where is \texttt{SELF_TYPE} Illegal in \texttt{COOL}?

\texttt{m(x : T) : T' \{ ... \}}
- Only \texttt{T'} can be \texttt{SELF_TYPE}!

What could go wrong if \texttt{T} were \texttt{SELF_TYPE}?

\texttt{class A \{ \comp(x : SELF_TYPE) : Bool \{ ... \}; \};
class B inherits A \{
 b() : int \{ ... \};
 \comp(y : SELF_TYPE) : Bool \{ ... y.b() ... \};
};

\texttt{... let x : A ← new B in ... x.comp(new A); ...}

...
Summary of SELF_TYPE

- The extended \leq and lub operations can do a lot of the work. Implement them to handle SELF_TYPE
- SELF_TYPE can be used only in a few places. Be sure it isn’t used anywhere else.
- A use of SELF_TYPE always refers to any subtype in the current class
 - The exception is the type checking of dispatch.
 - SELF_TYPE as the return type in an invoked method might have nothing to do with the current class
Why Cover SELF_TYPE?

- SELF_TYPE is a research idea
 - It adds more expressiveness to the type system
- SELF_TYPE is itself not so important
 - except for the project
- Rather, SELF_TYPE is meant to illustrate that type checking can be quite subtle
- In practice, there should be a balance between the complexity of the type system and its expressiveness
Type Systems

• The rules in these lecture were Cool-specific
 - Other languages have very different rules
 - We’ll survey a few more type systems later

• General themes
 - Type rules are defined on the structure of expressions
 - Types of variables are modeled by an environment

• Types are a play between flexibility and safety
Homework

- No WA due this week
- No PA due this week
- PA4/WA4 Checkpoint Due Wed Oct 14
- For Next Time: Read Chapters 8.1-8.3
 - Optional Grant & Smith