Them's fightin' words, mister...unless'n, O'course, them's just semantics.
Today’s Cunning Plan

• Review, Truth, and Provability
• Large-Step Opsem Commentary
• **Small-Step Contextual Semantics**
 - Reductions, Redexes, and Contexts
• Applications and Recent Research
Survey Results

++++++ lecture style
++++ good content (theory/practice)
++ research paper reading
++ fast pace of course
+ HW0 bonus problem
+ humor
+ revise fundamental math
+ trivia quiz
+ lectures are clear & easy
+ use of examples
+ no exams
+ materials posted early

--- Wes talks fast
--- old room was dark, new room is far
- want more implementation
- hit in eye by candy
- want more programming paradigms
- don't know what to focus on w/papers
- imposter syndrome
- want more examples in class
- “ML is sort of a pain”
- trivia quiz focuses on Western culture
- want chocolate
Bookkeeping

- Hookkeeper (wire ring that holds a fly-fishing hook in place)
- Tattooee
- Bookkeeper
 - Subbookkeeper (!)
- Sweettooth
60 Second Summary - Semantics

• A **formal semantics** is a system for assigning meanings to programs.
• For now, programs are IMP commands and expressions
• In **operational semantics** the meaning of a program is “what it evaluates to”
• Any opsem system gives **rules of inference** that tell you how to evaluate programs
Summary - Judgments

- Rules of inference allow you to derive judgments ("something that is knowable") like
 \[<e, \sigma> \Downarrow n\]
 - In state \(\sigma\), expression \(e\) evaluates to \(n\)
 \[<c, \sigma> \Downarrow \sigma'\]
 - After evaluating command \(c\) in state \(\sigma\) the new state will be \(\sigma'\)

- State \(\sigma\) maps variables to values (\(\sigma : L \rightarrow Z\))
- Inferences equivalent up to variable renaming:
 \[<c, \sigma> \Downarrow \sigma' \quad === \quad <c', \sigma_7> \Downarrow \sigma_8\]
Notation: Rules of Inference

• We express the evaluation rules as rules of inference for our judgment
 - called the derivation rules for the judgment
 - also called the evaluation rules (for operational semantics)

• In general, we have one rule for each language construct:

\[
\begin{align*}
\langle e_1, \sigma \rangle & \Downarrow n_1 \\
\langle e_2, \sigma \rangle & \Downarrow n_2 \\
\langle e_1 + e_2, \sigma \rangle & \Downarrow n_1 + n_2
\end{align*}
\]

This is the only rule for \(e_1 + e_2 \)
Evaluation By Inversion

• We must find n_1 and n_2 such that $e_1 \Downarrow n_1$ and $e_2 \Downarrow n_2$ are derivable
 - This is done recursively

• If there is exactly one rule for each kind of expression we say that the rules are syntax-directed
 - At each step at most one rule applies
 - This allows a simple evaluation procedure as above (recursive tree-walk)
 - True for our Aexp but not Bexp.
Summary - Rules

- **Rules of inference** list the hypotheses necessary to arrive at a conclusion

 \[\langle x, \sigma \rangle \Downarrow \sigma(x) \quad \langle e_1, \sigma \rangle \Downarrow n_1 \quad \langle e_2, \sigma \rangle \Downarrow n_2 \]

 \[\langle e_1 - e_2, \sigma \rangle \Downarrow n_1 \text{ minus } n_2 \]

- A **derivation** involves interlocking (well-formed) instances of rules of inference

 \[\langle 4, \sigma_3 \rangle \Downarrow 4 \quad \langle 2, \sigma_3 \rangle \Downarrow 2 \]

 \[\langle 4*2, \sigma_3 \rangle \Downarrow 8 \quad \langle 6, \sigma_3 \rangle \Downarrow 6 \]

 \[\langle (4*2) - 6, \sigma_3 \rangle \Downarrow 2 \]
Operational Semantics
Small-Step Semantics

Sherlock saw the man using binoculars.
Sherlock saw the man using binoculars.
Provability

• Given an opsem system, \(<e, \sigma> \downarrow n \) is **provable** *if there exists* a well-formed derivation with \(<e, \sigma> \downarrow n \) as its conclusion
 - “well-formed” = “every step in the derivation is a valid instance of one of the rules of inference for this opsem system”
 - “\(\vdash <e, \sigma> \downarrow n \)” = “it is provable that \(<e, \sigma> \downarrow n \)”

• We would *like* truth and provability to be closely related
• “A Vorlon said understanding is a three-edged sword. Your side, their side and the truth.”
 - Sheridan, Babylon 5, *Into The Fire*

• We will not formally define “truth” yet

• Instead we appeal to your intuition
 - \(<2+2, \sigma> \downarrow 4\) -- *should be* true
 - \(<2+2, \sigma> \downarrow 5\) -- *should be* false
Completeness

• A proof system (like our operational semantics) is **complete** if every true judgment is provable.

• If we **replaced** the subtract rule with:

\[
\langle e_1, \sigma \rangle \downarrow n \quad \langle e_2, \sigma \rangle \downarrow 0
\]

\[
\langle e_1 - e_2, \sigma \rangle \downarrow n
\]

• Our opsem would be **incomplete**:

\[
\langle 4-2, \sigma \rangle \downarrow 2 \quad -- \text{true but not provable}
\]
Consistency

• A proof system is **consistent** (or **sound**) if every provable judgment is true.

• If we *replaced* the subtract rule with:

\[
\begin{align*}
\langle e_1, \sigma \rangle & \Downarrow n_1 & \langle e_2, \sigma \rangle & \Downarrow n_2 \\
\langle e_1 - e_2, \sigma \rangle & \Downarrow n_1 + 3
\end{align*}
\]

• Our opsem would be **inconsistent** (or **unsound**):

- \(\langle 6-1, \sigma \rangle \Downarrow 9\) -- false but provable

"A foolish consistency is the hobgoblin of little minds, adored by little statesmen and philosophers and divines."

Desired Traits

• Typically a system (of operational semantics) is always complete (unless you forget a rule)

• If you are not careful, however, your system may be unsound

• Usually that is very bad
 - A paper with an unsound type system is usually rejected
 - Papers often prove (sketch) that a system is sound
 - Recent research (e.g., Engler, ESP) into useful but unsound systems exists, however

• In this class your work should be complete and consistent (e.g., on homework problems)

Dr. Peter Venkman: I'm a little fuzzy on the whole "good/bad" thing here. What do you mean, "bad"?
Dr. Egon Spengler: Try to imagine all life as you know it stopping instantaneously and every molecule in your body exploding at the speed of light.
With That In Mind

• We now return to opsem for IMP

\[
\begin{align*}
\langle e, \sigma \rangle \Downarrow n & \\
\langle x := e, \sigma \rangle \Downarrow \sigma[x := n] & \\
\langle b, \sigma \rangle \Downarrow \text{false} & \\
\langle \text{while } b \text{ do } c, \sigma \rangle \Downarrow \sigma & \\
\langle b, \sigma \rangle \Downarrow \text{true} & \quad \langle c; \text{ while } b \text{ do } c, \sigma \rangle \Downarrow \sigma'
\end{align*}
\]

Def:

\[
\begin{align*}
\sigma[x:= n](x) &= n \\
\sigma[x:= n](y) &= \sigma(y)
\end{align*}
\]
Command Evaluation Notes

• The order of evaluation is important
 - c_1 is evaluated before c_2 in $c_1; c_2$
 - c_2 is not evaluated in “if true then c_1 else c_2”
 - c is not evaluated in “while false do c”
 - b is evaluated first in “if b then c_1 else c_2”
 - this is explicit in the evaluation rules

• Conditional constructs (e.g., $b_1 \lor b_2$) have multiple evaluation rules
 - but only one can be applied at one time
Command Evaluation Trials

• The evaluation rules are **not syntax-directed**
 - See the rules for **while**, \(\land\)
 - The evaluation **might not terminate**

• Recall: the evaluation rules suggest an interpreter

• Natural-style semantics has two big disadvantages (continued ...)
Disadvantages of Natural-Style Operational Semantics

• It is hard to talk about commands whose evaluation does not terminate
 - i.e., when there is no σ' such that $<c, \sigma> \Downarrow \sigma'$
 - But that is true also of ill-formed or erroneous commands (in a richer language)!

• It does not give us a way to talk about intermediate states
 - Thus we cannot say that on a parallel machine the execution of two commands is interleaved (= no modeling threads)
Semantics Solution

- **Small-step semantics** addresses these problems
 - Execution is modeled as a (possible infinite) sequence of states

- Not quite as easy as large-step natural semantics, though

- **Contextual semantics** is a small-step semantics where the atomic execution step is a rewrite of the program
Contextual Semantics

- We will define a relation \(\langle c, \sigma \rangle \rightarrow \langle c', \sigma' \rangle \)
 - \(c' \) is obtained from \(c \) via an atomic rewrite step
 - Evaluation terminates when the program has been rewritten to a terminal program
 - one from which we cannot make further progress
 - For IMP the terminal command is “skip”
 - As long as the command is not “skip” we can make further progress
 - some commands never reduce to skip (e.g., “while true do skip”)
Contextual Derivations

• In small-step contextual semantics, derivations are not tree-structured.

• A contextual semantics derivation is a sequence (or list) of atomic rewrites:

\[
<x+(7-3),\sigma> \rightarrow <x+(4),\sigma> \rightarrow <5+4,\sigma> \rightarrow <9,\sigma>
\]

\[\sigma(x)=5\]
What is an Atomic Reduction?

- **What is an atomic reduction step?**
 - Granularity is a choice of the semantics designer
- **How to select the next reduction step, when several are possible?**
 - This is the order of evaluation issue
Q: Music

- This Hong Kong singer is one of the original four cantopop Heavenly Kings (四大天王), and possesses a rich baritone/tenor. He is sometimes called the God of Songs (歌神). His most famous work is perhaps Goodbye Kiss (吻别) - one of the best-selling albums of all time, with over 3 million copies sold in 1993 alone. Give the English or Romanized name of this singer.
Correcting English Prose

4. Lizzy drank in the sight of him like a thirst craven man consumes water.

421. "I go here, silly," said Kimi with a proud expression. "And how I might ask? Your scores were not legible for this school."

312. Every member of the Thespians, or anyone who has ever acted in one of our school plays was a pre-Madonna, mellow-dramatic; over-actor and I didn't want to be one of them.

198. Nobody goes into Donovan's Layer, For they sence evil. But Livvy doesn't she see's something no one else does.
This Egyptian-born United Nations Secretary-General served from 1992 to 1996. He was criticized for, among other things, failing to act during the 1994 Rwandan genocides and during the continuing Angolan civil war.
Redexes

- A **redex** is a syntactic expression or command that can be reduced (transformed) in one atomic step.
- Redexes are defined via a grammar:
 \[r ::= x \quad (x \in L) \]
 \[\mid n_1 + n_2 \]
 \[\mid x := n \]
 \[\mid \text{skip;} \; c \]
 \[\mid \text{if true then } c_1 \text{ else } c_2 \]
 \[\mid \text{if false then } c_1 \text{ else } c_2 \]
 \[\mid \text{while } b \text{ do } c \]
- For brevity, we mix exp and command redexes.
- Note that \((1 + 3) + 2\) is not a redex, but \(1 + 3\) is.
Local Reduction Rules for IMP

- One for each redex: \(<r, \sigma> \rightarrow <e, \sigma'>\)
 - means that in state \(\sigma\), the redex \(r\) can be replaced in one step with the expression \(e\)

\(<x, \sigma> \rightarrow <\sigma(x), \sigma>\)
\(<n_1 + n_2, \sigma> \rightarrow <n, \sigma>\) where \(n = n_1\) plus \(n_2\)
\(<n_1 = n_2, \sigma> \rightarrow <true, \sigma>\) if \(n_1 = n_2\)
\(<x := n, \sigma> \rightarrow <\text{skip}, \sigma[x := n]>\)
\(<\text{skip}; c, \sigma> \rightarrow <c, \sigma>\)
\(<\text{if true then } c_1 \text{ else } c_2, \sigma> \rightarrow <c_1, \sigma>\)
\(<\text{if false then } c_1 \text{ else } c_2, \sigma> \rightarrow <c_2, \sigma>\)
\(<\text{while } b \text{ do } c, \sigma> \rightarrow <\text{if } b \text{ then } c; \text{ while } b \text{ do } c \text{ else } \text{skip}, \sigma>\)
The Global Reduction Rule

• General idea of contextual semantics
 - **Decompose** the current expression into the **redex**-to-reduce-next and the remaining program
 - The remaining program is called a **context**
 - Reduce the redex “r” to some other expression “e”
 - The resulting (reduced) expression consists of “e” with the original context

Not happy? I’ll explain with pictures soon!
As A Picture (1)

(Context)
...
x := 2+2 ;
print x

Step 1: Find The Redex
As A Picture (2)

(Context)
...

x := 2+2 (redex) ;
print x

Step 1: Find The Redex
Step 2: Reduce The Redex
As A Picture (3)

(Context)
...
x := \textcolor{red}{2+2 \ (redex)} ;
print x

4 \ (reduced)

Step 1: Find The Redex
Step 2: Reduce The Redex
As A Picture (4)

(Context)

...

\[
x := 4; \\
\text{print } x
\]

Step 1: Find The Redex
Step 2: Reduce The Redex
Step 3: Replace It In The Context
Contextual Analysis

- We use H to range over contexts
- We write $H[r]$ for the expression obtained by placing redex r in context H
- Now we can define a small step

If $<r, \sigma> \rightarrow <e, \sigma'>$
then $<H[r], \sigma> \rightarrow <H[e], \sigma'>$
Contexts

• A **context** is like an expression (or command) with a marker • in the place where the **redex** goes

• Examples:
 - To evaluate “(1 + 3) + 2” we use the redex \(1 + 3\) and the context “\(• + 2\)”
 - To evaluate “if \(x > 2\) then \(c_1\) else \(c_2\)” we use the redex \(x\) and the context “if • > 2 then \(c_1\) else \(c_2\)”
Context Terminology

- A context is also called an “expression with a hole”
- The marker • is sometimes called a hole
- H[r] is the expression obtained from H by replacing • with the redex r

“Avoid context and specifics; generalize and keep repeating the generalization.”
-- Jack Schwartz
Contextual Semantics Example

- $x := 1 ; x := x + 1$ with initial state $[x:=0]$

<table>
<thead>
<tr>
<th><Comm, State></th>
<th>Redex •</th>
<th>Context</th>
</tr>
</thead>
<tbody>
<tr>
<td>$<x := 1; x := x+1, [x := 0]>$</td>
<td>$x := 1$</td>
<td>•; $x := x+1$</td>
</tr>
<tr>
<td>$<\text{skip}; x := x+1, [x := 1]>$</td>
<td>$\text{skip}; x := x+1$</td>
<td>•</td>
</tr>
<tr>
<td>$<x := x+1, [x := 1]>$</td>
<td>x</td>
<td>$x := • + 1$</td>
</tr>
</tbody>
</table>

What happens next?
Contextual Semantics Example

- $x := 1 ; x := x + 1$ with initial state $[x := 0]$

<table>
<thead>
<tr>
<th><Comm, State></th>
<th>Redex •</th>
<th>Context</th>
</tr>
</thead>
<tbody>
<tr>
<td>$<x := 1; x := x+1, [x := 0]>$</td>
<td>$x := 1$</td>
<td>•; $x := x+1$</td>
</tr>
<tr>
<td>$<\text{skip}; x := x+1, [x := 1]>$</td>
<td>$\text{skip}; x := x+1$</td>
<td>•</td>
</tr>
<tr>
<td>$<x := x+1, [x := 1]>$</td>
<td>x</td>
<td>$x := \bullet + 1$</td>
</tr>
<tr>
<td>$<x := 1 + 1, [x := 1]>$</td>
<td>$1 + 1$</td>
<td>$x := \bullet$</td>
</tr>
<tr>
<td>$<x := 2, [x := 1]>$</td>
<td>$x := 2$</td>
<td>•</td>
</tr>
<tr>
<td>$<\text{skip}, [x := 2]>$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
More On Contexts

- **Contexts** are defined by a grammar:

\[
H ::= \bullet \mid n + H \\
| H + e \\
| x := H \\
| \text{if } H \text{ then } c_1 \text{ else } c_2 \\
| H; c
\]

- A context has **exactly one** \bullet marker.
- A redex is never a value.
What’s In A Context?

• Contexts specify precisely how to find the next redex
 - Consider $e_1 + e_2$ and its decomposition as $H[r]$
 - If e_1 is n_1 and e_2 is n_2 then $H = \bullet$ and $r = n_1 + n_2$
 - If e_1 is n_1 and e_2 is not n_2 then $H = n_1 + H_2$ and $e_2 = H_2[r]$
 - If e_1 is not n_1 then $H = H_1 + e_2$ and $e_1 = H_1[r]$
 - In the last two cases the decomposition is done recursively
 - Check that in each case the solution is unique
Unique Next Redex:
Proof By Handwaving Examples

- e.g. $c = \text{"}c_1; c_2\text{"}$ - either
 - $c_1 = \text{skip}$ and then $c = H[\text{skip}; c_2]$ with $H = \bullet$
 - or $c_1 \neq \text{skip}$ and then $c_1 = H[r]$; so $c = H'[r]$ with $H' = H; c_2$

- e.g. $c = \text{"}\text{if } b \text{ then } c_1 \text{ else } c_2\text{"}$
 - either $b = \text{true}$ or $b = \text{false}$ and then $c = H[r]$ with $H = \bullet$
 - or b is not a value and $b = H[r]$; so $c = H'[r]$ with $H' = \text{if } H \text{ then } c_1 \text{ else } c_2$
Context Decomposition

• Decomposition theorem:

 If \(c \) is not “skip” then there exist unique \(H \) and \(r \) such that \(c = H[r] \)

 - “Exist” means progress
 - “Unique” means determinism
Short-Circuit Evaluation

• What if we want to express short-circuit evaluation of \(\land \) ?
 - Define the following contexts, redexes and local reduction rules

\[
H ::= \ldots \mid H \land b_2
\]
\[
r ::= \ldots \mid \text{true} \land b \mid \text{false} \land b
\]
\[
<\text{true} \land b, \sigma> \rightarrow <b, \sigma>
\]
\[
<\text{false} \land b, \sigma> \rightarrow <\text{false}, \sigma>
\]

- the local reduction kicks in before \(b_2 \) is evaluated
Contextual Semantics Summary

• Can view ⋄ as representing the program counter

• The advancement rules for ⋄ are non-trivial
 - At each step the entire command is decomposed
 - This makes contextual semantics inefficient to implement directly

• The major advantage of contextual semantics: it allows a mix of local and global reduction rules
 - For IMP we have only local reduction rules: only the redex is reduced
 - Sometimes it is useful to work on the context too
 - We’ll do that when we study memory allocation, etc.
Reading Real-World Examples

- Cobbe and Felleisen, POPL 2005
- Small-step contextual opsem for Java
- Their rule for object field access:

\[
P \vdash \langle E[\text{obj.fd}], S \rangle \leftrightarrow \langle E[F(fd)], S \rangle
\]
where \(F = \text{fields}(S(\text{obj})) \) and \(fd \in \text{dom}(F) \)

\[
P \vdash \langle E[\text{obj.fd}], S \rangle \rightarrow \langle E[F(fd)], S \rangle
\]
- where \(F = \text{fields}(S(\text{obj})) \) and \(fd \in \text{dom}(F) \)

- They use “E” for context, we use “H”
- They use “S” for state, we use “\(\sigma \)"
Lost In Translation

• $P \vdash <H[obj.fd],\sigma> \rightarrow <H[F(fd)],\sigma>$
 - Where $F=\text{fields}(\sigma(obj))$ and $fd \in \text{dom}(F)$

• They have “$P \vdash$”, but that just means “it can be proved in our system given P”

• $<H[obj.fd],\sigma> \rightarrow <H[F(fd)],\sigma>$
 - Where $F=\text{fields}(\sigma(obj))$ and $fd \in \text{dom}(F)$
Lost In Translation 2

- $<H[\text{obj}.\text{fd}], \sigma> \rightarrow <H[F(\text{fd})], \sigma>$
 - Where $F = \text{fields}(\sigma(\text{obj}))$ and $fd \in \text{dom}(F)$
- They model objects (like obj), but we do not (yet) - let’s just make fd a variable:
- $<H[\text{fd}], \sigma> \rightarrow <H[F(\text{fd})], \sigma>$
 - Where $F = \sigma$ and $fd \in L$
- Which is just our variable-lookup rule:
- $<H[\text{fd}], \sigma> \rightarrow <H[\sigma(\text{fd})], \sigma>$ (when $fd \in L$)
“Sleep On It”

“The Semantics Pillow”

1. \[\frac{e_0 \rightarrow e'_0}{e_0 + e_1 \rightarrow e'_0 + e_1} \]

2. \[\frac{e_1 \rightarrow e'_1}{m_0 + e_1 \rightarrow m_0 + e'_1} \]

3. \[\frac{m_0 + m_1 \rightarrow m_2}{\text{Only 19.95}} \]

“Learn while you sleep!”
Homework

- Homework 1 Due Thursday
- Read Hooimeijer & Weimer paper