Proof Techniques for Operational Semantics
Small-Step Contextual Semantics

- In small-step contextual semantics, derivations are not tree-structured.
- A **contextual semantics derivation** is a sequence (or list) of atomic rewrites:

 \[
 <x+(7-3),\sigma> \rightarrow <x+(4),\sigma> \rightarrow <5+4,\sigma> \rightarrow <9,\sigma>
 \]

 \[\sigma(x)=5\]

 If \(<r, \sigma> \rightarrow <e, \sigma'>\)
 then \(<H[r], \sigma> \rightarrow <H[e], \sigma'>\)

\(r = \text{redex}\)
\(H = \text{context (has hole)}\)
Context Decomposition

• Decomposition theorem:

If c is not “skip” then there exist unique H and r such that c is H[r]
- “Exist” means progress
- “Unique” means determinism
Short-Circuit Evaluation

• What if we want to express short-circuit evaluation of \land ?
 - Define the following contexts, redexes and local reduction rules

 $H ::= \ldots \mid H \land b_2$

 $r ::= \ldots \mid \text{true} \land b \mid \text{false} \land b$

 $<\text{true} \land b, \sigma> \rightarrow <b, \sigma>$

 $<\text{false} \land b, \sigma> \rightarrow <\text{false}, \sigma>$

 - the local reduction kicks in before b_2 is evaluated
Contextual Semantics Summary

- Can view it as representing the program counter
- Contextual semantics is inefficient to implement directly

The major advantage of contextual semantics: it allows a mix of local and global reduction rules
- For IMP we have only local reduction rules: only the redex is reduced
- Sometimes it is useful to work on the context too
- We’ll do that when we study memory allocation, etc.
Cunning Plan for Proof Techniques

• Why Bother?
• Mathematical Induction
• Well-Founded Induction
• Structural Induction
 - “Induction On The Structure Of The Derivation”
One-Slide Summary

• **Mathematical Induction** is a proof technique: If you can prove $P(0)$ and you can prove that $P(n)$ implies $P(n+1)$, then you can conclude that for all natural numbers n, $P(n)$ holds.

• Induction works because the natural numbers are **well-founded**: there are no infinite descending chains $n > n-1 > n-2 > \ldots > \ldots$.

• **Structural induction** is induction on a formal structure, like an AST. The base cases use the leaves, the inductive steps use the inner nodes.

• **Induction on a derivation** is structural induction applied to a derivation D (e.g., $D::\langle c, \sigma \rangle \Downarrow \sigma'$).
Why Bother?

• I am loathe to teach you anything that I think is a waste of your time.
• Thus I must convince you that inductive opsem proof techniques are useful.
 - Recall class goals: understand PL research techniques and apply them to your research
• This motivation should also highlight where you might use such techniques in your own research.
Never Underestimate

“Any counter-example posed by the Reviewers against this proof would be a useless gesture, no matter what technical data they have obtained. **Structural Induction** is now the ultimate proof technique in the universe. I suggest we use it.” --- Admiral Motti, *A New Hope*
Classic Example (Schema)

• “A well-typed program cannot go wrong.”
 - Robin Milner

• When you design a new type system, you must show that it is safe (= that the type system is sound with respect to the operational semantics).

• *A Syntactic Approach to Type Soundness*. Andrew K. Wright, Matthias Felleisen, 1992.
 - **Type preservation**: “if you have a well-typed program and apply an opsem rule, the result is well-typed.”
 - **Progress**: “a well-typed program will never get stuck in a state with no applicable opsem rules”

• Done for real languages: SML/NJ, SPARK ADA, Java
 - PL/I, plus basically every toy PL research language ever.
Classic Examples

• **CCured Project (Berkeley)**
 - A program that is instrumented with CCured run-time checks (= “adheres to the CCured type system”) will not segfault (= “the x86 opsem rules will never get stuck”).

• **Vault Language (Microsoft Research)**
 - A well-typed Vault program does not leak any tracked resources and invokes tracked APIs correctly (e.g., handles IRQL correctly in asynchronous Windows device drivers, cf. Capability Calculus)

• **RC - Reference-Counted Regions For C (Intel Research)**
 - A well-typed RC program gains the speed and convenience of region-based memory management but need never worry about freeing a region too early (run-time checks).

• **Typed Assembly Language (Cornell)**
 - Reasonable C programs (e.g., device drivers) can be translated to TALx86. Well-typed TALx86 programs are type- and memory-safe.

• **Secure Information Flow (Many, e.g., Volpano et al. ‘96)**
 - Lattice model of secure flow analysis is phrased as a type system, so type soundness = noninterference.
Recent Examples

• “The proof proceeds by rule induction over the target term producing translation rules.”
 - Chakravarty et al. ’05

• “Type preservation can be proved by standard induction on the derivation of the evaluation relation.”
 - Hosoya et al. ’05

• “Proof: By induction on the derivation of N ↓ W.”
 - Sumi and Pierce ’05

• Method: chose four POPL 2005 papers at random, the three above mentioned structural induction.
 (emphasis mine)
Induction

• Most important technique for studying the formal semantics of prog languages
 - If you want to perform or understand PL research, you must grok this!

• Mathematical Induction (simple)
• Well-Founded Induction (general)
• Structural Induction (widely used in PL)
Mathematical Induction

- **Goal:** prove $\forall n \in \mathbb{N}. P(n)$

- **Base Case:** prove $P(0)$

- **Inductive Step:**
 - Prove $\forall n>0. P(n) \implies P(n+1)$
 - “Pick arbitrary n, assume $P(n)$, prove $P(n+1)$”

- Why does induction work?
Why Does It Work?

- There are no infinite descending chains of natural numbers
- For any n, $P(n)$ can be obtained by starting from the base case and applying n instances of the inductive step
Well-Founded Induction

• A relation $\leq \subseteq A \times A$ is **well-founded** if there are no infinite descending chains in A
 - Example: $<_1 = \{ (x, x +1) | x \in \mathbb{N} \}$
 • aka the predecessor relation
 - Example: $<$ = $\{ (x, y) | x, y \in \mathbb{N} \text{ and } x < y \}$

• **Well-founded induction:**
 - To prove $\forall x \in A. \ P(x)$ it is enough to prove $\forall x \in A. \ [\forall y \leq x \Rightarrow P(y)] \Rightarrow P(x)$
 - If \leq is $<_1$ then we obtain mathematical induction as a special case
Structural Induction

• Recall $e ::= n \mid e_1 + e_2 \mid e_1 \ast e_2 \mid x$

• Define $\preceq \subseteq \text{Aexp} \times \text{Aexp}$ such that

 $e_1 \preceq e_1 + e_2 \quad e_2 \preceq e_1 + e_2$

 $e_1 \preceq e_1 \ast e_2 \quad e_2 \preceq e_1 \ast e_2$

 - no other elements of $\text{Aexp} \times \text{Aexp}$ are \preceq-related

• To prove $\forall e \in \text{Aexp}. \ P(e)$

 - $\vdash \forall n \in \mathbb{Z}. \ P(n)$

 - $\vdash \forall x \in \mathbb{L}. \ P(x)$

 - $\vdash \forall e_1, e_2 \in \text{Aexp}. \ P(e_1) \land P(e_2) \Rightarrow P(e_1 + e_2)$

 - $\vdash \forall e_1, e_2 \in \text{Aexp}. \ P(e_1) \land P(e_2) \Rightarrow P(e_1 \ast e_2)$
Notes on Structural Induction

• Called structural induction because the proof is guided by the structure of the expression

• One proof case per form of expression
 - Atomic expressions (with no subexpressions) are all base cases
 - Composite expressions are the inductive case

• This is the most useful form of induction in the study of PL
Example of Induction on Structure of Expressions

• Let
 - \(L(e) \) be the # of literals and variable occurrences in \(e \)
 - \(O(e) \) be the # of operators in \(e \)

• Prove that \(\forall e \in Aexp. \ L(e) = O(e) + 1 \)

• Proof: by induction on the structure of \(e \)
 - Case \(e = n \). \(L(e) = 1 \) and \(O(e) = 0 \)
 - Case \(e = x \). \(L(e) = 1 \) and \(O(e) = 0 \)
 - Case \(e = e_1 + e_2 \).
 - \(L(e) = L(e_1) + L(e_2) \) and \(O(e) = O(e_1) + O(e_2) + 1 \)
 - By induction hypothesis \(L(e_1) = O(e_1) + 1 \) and \(L(e_2) = O(e_2) + 1 \)
 - Thus \(L(e) = O(e_1) + O(e_2) + 2 = O(e) + 1 \)
 - Case \(e = e_1 \times e_2 \). Same as the case for +
Other Proofs by Structural Induction on Expressions

- Most proofs for Aexp sublanguage of IMP
- **Small-step** and **natural** semantics obtain equivalent results:
 \[\forall e \in \text{Exp. } \forall n \in \mathbb{N}. \quad e \rightarrow^* n \iff e \Downarrow n \]

- Structural induction on expressions works here because all of the semantics are syntax directed
Stating The Obvious (With a Sense of Discovery)

• You are given a concrete state σ.
• You have $\vdash <x + 1, \sigma> \downarrow 5$
• You also have $\vdash <x + 1, \sigma> \downarrow 88$
• Is this possible?
Why That Is Not Possible

• Prove that IMP is deterministic

\[
\forall e \in A\text{exp.} \quad \forall \sigma \in \Sigma. \quad \forall n, n' \in \mathbb{N}. \quad <e, \sigma> \downarrow n \land <e, \sigma> \downarrow n' \Rightarrow n = n'
\]

\[
\forall b \in B\text{exp.} \quad \forall \sigma \in \Sigma. \quad \forall t, t' \in B. \quad <b, \sigma> \downarrow t \land <b, \sigma> \downarrow t' \Rightarrow t = t'
\]

\[
\forall c \in \text{Comm.} \quad \forall \sigma, \sigma', \sigma'' \in \Sigma. \quad <c, \sigma> \downarrow \sigma' \land <c, \sigma> \downarrow \sigma'' \Rightarrow \sigma' = \sigma''
\]

• No immediate way to use mathematical induction

• For commands we cannot use induction on the structure of the command

 – while’s evaluation does not depend only on the evaluation of its strict subexpressions

\[
<b, \sigma> \downarrow \text{true} \quad <c, \sigma> \downarrow \sigma' \quad <\text{while } b \text{ do } c, \sigma> \downarrow \sigma''
\]

\[
<\text{while } b \text{ do } c, \sigma> \downarrow \sigma''
\]
Q: Movies (292 / 842)

• From the 1981 movie Raiders of the Lost Ark, give either the protagonist's phobia xor the composer of the musical score.
Computer Science

- This Dutch Turing-award winner is famous for the semaphore, “THE” operating system, the Banker's algorithm, and a shortest path algorithm. He favored structured programming, as laid out in the 1968 article *Go To Statement Considered Harmful*. He was a strong proponent of formal verification and correctness by construction. He also penned *On The Cruelty of Really Teaching Computer Science*, which argues that CS is a branch of math and relates provability to correctness.
Recall Opsem

- **Operational semantics** assigns meanings to programs by listing **rules of inference** that allow you to prove **judgments** by making derivations.

- A **derivation** is a tree-structured object made up of valid instances of inference rules.
We Need Something New

- Some more powerful form of induction ...
- With all the bells and whistles!
Induction on the Structure of Derivations

- Key idea: The hypothesis does not just assume a \(c \in \text{Comm} \) but the **existence of a derivation of** \(<c, \sigma> \downarrow \sigma'\)
- Derivation trees are also defined inductively, just like expression trees
- A derivation is built of **subderivations**:

\[
\begin{align*}
<x, \sigma_{i+1}> & \downarrow 5 - i \quad 5 - i \leq 5 \\
\begin{array}{c}
\hline
<x \leq 5, \sigma_{i+1}> \downarrow \text{true} \\
\hline
\end{array}
\end{align*}
\]

\[
\begin{align*}
<x + 1, \sigma_{i+1}> & \downarrow 6 - i \\
<x := x + 1, \sigma_{i+1}> & \downarrow \sigma_i \\
\begin{array}{c}
\hline
<W, \sigma_i> \downarrow \sigma_0 \\
\hline
\end{array}
\end{align*}
\]

\[
\begin{align*}
<x := x + 1; W, \sigma_{i+1}> & \downarrow \sigma_0 \\
\begin{array}{c}
\hline
<\text{while } x \leq 5 \text{ do } x := x + 1, \sigma_{i+1}> \downarrow \sigma_0 \\
\hline
\end{array}
\end{align*}
\]

- Adapt the structural induction principle to work on the structure of derivations
Induction on Derivations

• To prove that for all derivations D of a judgment, property P holds

• **For each derivation rule** of the form

\[
\begin{array}{c}
H_1 \ldots H_n \\
\hline \\
C
\end{array}
\]

• Assume P holds for derivations of \(H_i \) (i = 1..n)

• Prove the the property holds for the derivation obtained from the derivations of \(H_i \) using the given rule
New Notation

- Write $D :: \text{Judgment}$ to mean “D is the derivation that proves Judgment”

- Example:

$$D :: <x+1, \sigma> \Downarrow 2$$
Induction on Derivations (2)

• Prove that evaluation of commands is deterministic:
 \[\langle c, \sigma \rangle \Downarrow \sigma' \Rightarrow \forall \sigma'' \in \Sigma. \langle c, \sigma \rangle \Downarrow \sigma'' \Rightarrow \sigma' = \sigma'' \]

• Pick arbitrary \(c, \sigma, \sigma' \) and \(D :: \langle c, \sigma \rangle \Downarrow \sigma' \)

• To prove: \(\forall \sigma'' \in \Sigma. \langle c, \sigma \rangle \Downarrow \sigma'' \Rightarrow \sigma' = \sigma'' \)
 - Proof: by induction on the structure of the derivation \(D \)

• Case: last rule used in \(D \) was the one for skip
 \[D :: \langle \text{skip}, \sigma \rangle \Downarrow \sigma \]
 - This means that \(c = \text{skip} \), and \(\sigma' = \sigma \)
 - By inversion \(\langle c, \sigma \rangle \Downarrow \sigma'' \) uses the rule for skip
 - Thus \(\sigma'' = \sigma \)
 - This is a base case in the induction
Induction on Derivations (3)

• Case: the last rule used in D was the one for sequencing

\[
D :: \begin{array}{c}
D_1 :: <c_1, \sigma> \Downarrow \sigma_1 & D_2 :: <c_2, \sigma_1> \Downarrow \sigma' \\
<\sigma_1; c_2, \sigma> \Downarrow \sigma'
\end{array}
\]

• Pick arbitrary \(\sigma'' \) such that \(D'' :: <c_1; c_2, \sigma> \Downarrow \sigma'' \).
 - by inversion \(D'' \) uses the rule for sequencing
 - and has subderivations \(D''_1 :: <c_1, \sigma> \Downarrow \sigma''_1 \) and \(D''_2 :: <c_2, \sigma''_1> \Downarrow \sigma'' \)

• By induction hypothesis on \(D_1 \) (with \(D''_1 \)): \(\sigma_1 = \sigma''_1 \)
 - Now \(D''_2 :: <c_2, \sigma_1> \Downarrow \sigma'' \)

• By induction hypothesis on \(D_2 \) (with \(D''_2 \)): \(\sigma'' = \sigma' \)

• This is a simple inductive case
Induction on Derivations (4)

- Case: the last rule used in D was `while true`

\[
D :: \frac{D_1 :: <b, \sigma> \downarrow \text{true} \quad D_2 :: <c, \sigma> \downarrow \sigma_1 \quad D_3 :: <\text{while } b \text{ do } c, \sigma_1> \downarrow \sigma'}{<\text{while } b \text{ do } c, \sigma> \downarrow \sigma'}
\]

- Pick arbitrary \(\sigma'' \) such that \(D'' :: <\text{while } b \text{ do } c, \sigma> \downarrow \sigma'' \)
 - by inversion and determinism of boolean expressions, \(D'' \) also uses the rule for `while true`
 - and has subderivations \(D''_2 :: <c, \sigma> \downarrow \sigma''_1 \) and \(D''_3 :: <W, \sigma''_1> \downarrow \sigma'' \)

- By induction hypothesis on \(D_2 \) (with \(D''_2 \)): \(\sigma_1 = \sigma''_1 \)
 - Now \(D''_3 :: <\text{while } b \text{ do } c, \sigma_1> \downarrow \sigma'' \)

- By induction hypothesis on \(D_3 \) (with \(D''_3 \)): \(\sigma'' = \sigma' \)
What Do You, The Viewers At Home, Think?

- Let’s do *if true* together!
- Case: the last rule in D was *if true*

\[
D :: \quad D_1 :: <b, \sigma> \downarrow \text{true} \quad \quad \quad D_2 :: <c1, \sigma> \downarrow \sigma_1
\]

\[
<\text{if } b \text{ do } c1 \text{ else } c2, \sigma> \downarrow \sigma_1
\]

- Try to do this on a piece of paper. In a few minutes I’ll have some lucky winners come on down.
Induction on Derivations (5)

• Case: the last rule in D was \textit{if true}

\[
D :: \begin{array}{c}
D_1 :: <b, \sigma> \Downarrow \text{true} \\
D_2 :: <c1, \sigma> \Downarrow \sigma'
\end{array} \\
<\text{if } b \text{ do } c1 \text{ else } c2, \sigma> \Downarrow \sigma'
\]

• Pick arbitrary σ'' such that
\[
D'' :: <\text{if } b \text{ do } c1 \text{ else } c2, \sigma> \Downarrow \sigma''
\]
 - By inversion and determinism, D'' also uses \textit{if true}
 - And has subderivations $D''_1 :: <b, \sigma> \Downarrow \text{true}$ and $D''_2 :: <c1, \sigma> \Downarrow \sigma''$

• By induction hypothesis on D_2 (with D''_2): $\sigma' = \sigma''$
Induction on Derivations

Summary

• If you must prove $\forall x \in A. P(x) \Rightarrow Q(x)$
 - with A inductively defined and $P(x)$ rule-defined
 - we pick arbitrary $x \in A$ and $D :: P(x)$
 - we could do induction on both facts
 • $x \in A$ leads to induction on the structure of x
 • $D :: P(x)$ leads to induction on the structure of D
 - Generally, the induction on the structure of the derivation is more powerful and a safer bet

• Sometimes there are many choices for induction
 - choosing the right one is a trial-and-error process
 - a bit of practice can help a lot
Equivalence

- Two expressions (commands) are equivalent if they yield the same result from all states

\[e_1 \approx e_2 \text{ iff } \forall \sigma \in \Sigma. \forall n \in \mathbb{N}. \quad <e_1, \sigma> \downarrow n \text{ iff } <e_2, \sigma> \downarrow n \]

and for commands

\[c_1 \approx c_2 \text{ iff } \forall \sigma, \sigma' \in \Sigma. \quad <c_1, \sigma> \downarrow \sigma' \text{ iff } <c_2, \sigma> \downarrow \sigma' \]
Notes on Equivalence

• Equivalence is like logical validity
 - It must hold in all states (= all valuations)
 - $2 \approx 1 + 1$ is like “$2 = 1 + 1$ is valid”
 - $2 \approx 1 + x$ might or might not hold.
 • So, 2 is not equivalent to $1 + x$

• Equivalence (for IMP) is **undecidable**
 - If it were decidable we could solve the halting problem for IMP. *How?*

• Equivalence justifies code transformations
 - compiler optimizations
 - code instrumentation
 - abstract modeling

• **Semantics** is the basis for proving equivalence
Equivalence Examples

• \(\text{skip; } c \equiv c\)
• \(\text{while } b \text{ do } c \equiv \text{if } b \text{ then } c; \text{ while } b \text{ do } c \text{ else skip}\)
• \(\text{If } e_1 \equiv e_2 \text{ then } x := e_1 \equiv x := e_2\)
• \(\text{while true do skip} \equiv \text{while true do } x := x + 1\)
• \(\text{Let } c \text{ be}\)
 \(\text{while } x \neq y \text{ do}\)
 \(\text{if } x \geq y \text{ then } x := x - y \text{ else } y := y - x\)
then
\((x := 221; y := 527; c) \equiv (x := 17; y := 17)\)
Potential Equivalence

• \((x := e_1; x := e_2) \approx x := e_2\)

• Is this a valid equivalence?
Not An Equivalence

- \((x := e_1; x := e_2) \sim x := e_2\)

- Iie. Chigau yo. Dame desu!

- Not a valid equivalence for all \(e_1, e_2\).

- Consider:
 - \((x := x+1; x := x+2) \sim x := x+2\)

- But for \(n_1, n_2\) it’s fine:
 - \((x := n_1; x := n_2) \approx x := n_2\)
Proving An Equivalence

• Prove that “\text{skip}; \, c \approx c” for all c
• Assume that \(D :: \langle \text{skip}; \, c, \, \sigma \rangle \Downarrow \sigma' \)
• By inversion (twice) we have that

\[
\begin{aligned}
D :: & \quad \langle \text{skip}, \, \sigma \rangle \Downarrow \sigma \\
D_1 :: & \quad \langle c, \, \sigma \rangle \Downarrow \sigma'
\end{aligned}
\]

• Thus, we have \(D_1 :: \langle c, \sigma \rangle \Downarrow \sigma' \)
• The other direction is similar
Proving An Inequivalence

• Prove that \(x := y \nsim x := z\) when \(y \neq z\)

• **It suffices to exhibit a** \(\sigma\) **in which the two commands yield different results**

• Let \(\sigma(y) = 0\) and \(\sigma(z) = 1\)

• Then
 \[
 \langle x := y, \sigma \rangle \Downarrow \sigma[x := 0] \\
 \langle x := z, \sigma \rangle \Downarrow \sigma[x := 1]
 \]
Summary of Operational Semantics

• **Precise specification of dynamic semantics**
 - order of evaluation (or that it doesn’t matter)
 - error conditions (sometimes implicitly, by rule applicability; “no applicable rule” = “get stuck”)

• **Simple and abstract** (vs. implementations)
 - no low-level details such as stack and memory management, data layout, etc.

• Often **not compositional** (see while)

• **Basis for many proofs about a language**
 - Especially when combined with type systems!

• **Basis for much reasoning about programs**

• **Point of reference for other semantics**
Homework

- Don't Neglect Your Homework
- Read Winskel Chapter 5
 - Pay careful attention.