One-Slide Summary

- **Typing rules** formalize the semantics checks necessary to validate a program. Well-typed programs do not go wrong.

- **Subtyping** relations (\(\leq\)) and **least-upper-bounds** (lub) are powerful tools for type-checking dynamic dispatch.

- We will use **SELF_TYPE\(_C\)** for “\(C\) or any subtype of \(C\)”. It will show off the subtlety of type systems and allow us to check methods that return self objects.
Lecture Outline

• Typing Rules

• Dispatch Rules
 - Static
 - Dynamic

• SELF_TYPE
Assignment

What is this thing? What’s \vdash? O? \leq?

\[
O(id) = T_0
\]

\[
O \vdash e_1 : T_1
\]

\[
T_1 \leq T_0
\]

\[
O \vdash \text{id} \leftarrow e_1 : T_1
\]

[Assign]
Initialized Attributes

• Let $O_C(x) = T$ for all attributes $x:T$ in class C
 - O_C represents the class-wide scope
 • we “preload” the environment O with all attributes

• Attribute initialization is similar to let, except for the scope of names

\[
O_C(id) = T_0
\]

\[
O_C \vdash e_1 : T_1
\]

\[
T_1 \leq T_0 \quad \text{[Attr-Init]}
\]

\[
O_C \vdash id : T_0 \leftarrow e_1 ;
\]
If-Then-Else

- Consider: \(\text{if } e_0 \text{ then } e_1 \text{ else } e_2 \ \text{fi} \)
- The result can be either \(e_1 \) or \(e_2 \)
- The dynamic type is either \(e_1 \)'s or \(e_2 \)'s type
- The best we can do statically is the smallest supertype larger than the type of \(e_1 \) and \(e_2 \)
If-Then-Else example

• Consider the class hierarchy

![Class Hierarchy Diagram]

A B

• ... and the expression

 if ... then new A else new B fi

• Its type should allow for the dynamic type to be both A or B
 - Smallest supertype is P
Least Upper Bounds

• Define: \(\text{lub}(X,Y) \) to be the least upper bound of \(X \) and \(Y \). \(\text{lub}(X,Y) \) is \(Z \) if

 - \(X \leq Z \land Y \leq Z \)

 \(Z \) is an upper bound

 - \(X \leq Z' \land Y \leq Z' \Rightarrow Z \leq Z' \)

 \(Z \) is least among upper bounds

• In Cool, the least upper bound of two types is their least common ancestor in the inheritance tree
If-Then-Else Revisited

\[\text{O} \leftarrow e_0 : \text{Bool} \]
\[\text{O} \leftarrow e_1 : T_1 \]
\[\text{O} \leftarrow e_2 : T_2 \]

\[\text{O} \leftarrow \text{if } e_0 \text{ then } e_1 \text{ else } e_2 \text{ fi : } \text{lub}(T_1, T_2) \]

[If-Then-Else]
Case

- The rule for *case* expressions takes a lub over all branches

\[
\begin{align*}
O &\vdash e_0 : T_0 \\
O[T_1/x_1] &\vdash e_1 : T_1' \\
&\quad \ldots \\
O[T_n/x_n] &\vdash e_n : T_n'
\end{align*}
\]

\[\text{[Case]} \]

\[
O \vdash \text{case } e_0 \text{ of } x_1:T_1 \Rightarrow e_1; \\
\quad \ldots; \quad x_n : T_n \Rightarrow e_n; \text{ esac : lub}(T_1',\ldots,T_n')
\]
Method Dispatch

• There is a problem with type checking method calls:

\[
\begin{align*}
O & \leftarrow e_0 : T_0 \\
O & \leftarrow e_1 : T_1 \\
& \quad \vdots \\
O & \leftarrow e_n : T_n \\
\hline
O & \leftarrow e_0.f(e_1, \ldots, e_n) : ?
\end{align*}
\]

[Dispatch]

• We need information about the formal parameters and return type of \(f \)
Notes on Dispatch

• In Cool, method and object identifiers live in different name spaces
 - A method foo and an object foo can coexist in the same scope

• In the type rules, this is reflected by a separate mapping M for method signatures:

 $$M(C,f) = (T_1, \ldots, T_n, T_{ret})$$

 means in class C there is a method f

 $$f(x_1:T_1, \ldots, x_n:T_n): T_{ret}$$
An Extended Typing Judgment

• Now we have *two* environments: O and M

• The form of the typing judgment is

$$O, M \vdash e : T$$

read as: “with the assumption that the object identifiers have types as given by O and the method identifiers have signatures as given by M, the expression e has type T”
The Method Environment

- The method environment must be added to all rules
- In most cases, M is passed down but not actually used
 - Example of a rule that does not use M:
 $$
 \begin{align*}
 O, M \vdash e_1 : T_1 \\
 O, M \vdash e_2 : T_2 \\
 \hline
 O, M \vdash e_1 + e_2 : \text{Int}
 \end{align*}
 $$
 - Only the dispatch rules uses M
The Dispatch Rule Revisited

\[O, M \vdash e_0 : T_0 \]
\[O, M \vdash e_1 : T_1 \]
\[\vdots \]
\[O, M \vdash e_n : T_n \]
\[M(T_0, f) = (T_1', \ldots, T_n', T_{n+1}') \]
\[T_i \leq T_i' \quad (\text{for } 1 \leq i \leq n) \]

\[\boxed{\text{[Dispatch]}} \]
\[O, M \vdash e_0.f(e_1, \ldots, e_n) : T_{n+1}' \]

- Check receiver object \(e_0 \)
- Check actual arguments
- Look up formal argument types \(T_i' \)
Static Dispatch

- **Static dispatch** is a variation on normal dispatch

- The method is found in the class *explicitly named* by the programmer (not via e₀)

- The inferred type of the dispatch expression must *conform to the specified type*
Static Dispatch (Cont.)

\[O, M \vdash e_0 : T_0 \]
\[O, M \vdash e_1 : T_1 \]

\[\ldots \]

\[O, M \vdash e_n : T_n \]

\[T_0 \leq T \]

\[M(\mathbf{T}, f) = (T_1', \ldots, T_n', T_{n+1}') \]

\[T_i \leq T_i' \quad (\text{for } 1 \leq i \leq n) \]

\[O, M \vdash e_0 \mathbf{@T}.f(e_1, \ldots, e_n) : T_{n+1}' \]

[Static Dispatch]
How should we handle SELF_TYPE?
Flexibility vs. Soundness

- Recall that type systems have two conflicting goals:
 - Give flexibility to the programmer
 - Prevent valid programs from “going wrong”
 - Milner, 1981: “Well-typed programs do not go wrong”

- An active line of research is in the area of inventing more flexible type systems while preserving soundness
Dynamic And Static Types

• The **dynamic type** of an object is ?
• The **static type** of an expression is ?
• You tell me!
Dynamic And Static Types

• The **dynamic type** of an object is the class \(C \) that is used in the “new \(C \)” expression that created it
 - A run-time notion
 - Even languages that are not statically typed have the notion of dynamic type

• The **static type** of an expression is a notation that captures all possible dynamic types the expression could take
 - A compile-time notion
Recall: Soundness

Soundness theorem for the Cool type system:

\[\forall E. \ dynamic_type(E) \leq static_type(E) \]

Why is this OK?

- All operations that can be used on an object of type \(C \) can also be used on an object of type \(C' \leq C \)
 - Such as fetching the value of an attribute
 - Or invoking a method on the object
- Subclasses can only add attributes or methods
- Methods can be redefined but with same type!
An Example

- Class `Count` incorporates a counter
- The `inc` method works for any subclass

```
class Count {
  i : int ← 0;
  inc () : Count {
    i ← i + 1;
    self;
  }
};
```

But there is disaster lurking in the type system!
Continuing Example

• Consider a subclass **Stock** of **Count**

```java
class Stock inherits Count {
    name() : String { ...}; -- name of item
}
```

• And the following use of **Stock**:

```java
class Main {
    a : Stock ← (new Stock).inc ();
    ... a.name() ...
}
```

Type checking error!
Post-Mortem

- **(new Stock).inc()** has *dynamic* type Stock
- So it is legitimate to write

 \[
 a : Stock \leftarrow (\text{new } Stock).\text{inc} ()
 \]
- But this is not well-typed

 \[(\text{new } Stock).\text{inc}() \text{ has *static* type Count}\]
- The type checker “loses” type information
- This makes inheriting **inc** *useless*
 - So, we must redefine **inc** for each of the subclasses, with a specialized return type
We've been pwned!

ONLINE GAMING
Get your excuses ready beforehand.
You're going to need them.
I Need A Hero!

Type Systems

One tool. One million uses.
SELF_TYPE to the Rescue

- We will **extend the type system**

Insight:
- `inc` returns "self"
- Therefore the return value has same type as "self"
- Which could be **Count or any subtype of Count**!
- In the case of `(new Stock).inc()` the type is **Stock**

- We introduce the keyword **SELF_TYPE** to use for the return value of such functions
 - We will also modify the typing rules to handle **SELF_TYPE**
SELF_TYPE to the Rescue (2)

• SELF_TYPE allows the return type of inc to change when inc is inherited
• Modify the declaration of inc to read
 inc() : SELF_TYPE { ... }
• The type checker can now prove:
 $O, M \vdash (\text{new Count}).\text{inc}() : \text{Count}$
 $O, M \vdash (\text{new Stock}).\text{inc}() : \text{Stock}$
• The program from before is now well typed
SELF_TYPE as a Tool

• SELF_TYPE is not a dynamic type
• SELF_TYPE is a static type

• It helps the type checker to keep better track of types

• It enables the type checker to accept more correct programs

• In short, having SELF_TYPE increases the expressive power of the type system
SELF_TYPE and Dynamic Types (Example)

• What can be the dynamic type of the object returned by inc?
 - Answer: whatever could be the type of “self”

```plaintext
class A inherits Count { } ;
class B inherits Count { } ;
class C inherits Count { } ;
```

(inc could be invoked through any of these classes)

- Answer: Count or any subtype of Count
SELF_TYPE and Dynamic Types (Example)

• In general, if \texttt{SELF_TYPE} appears textually in the class \texttt{C} as the declared type of \texttt{E} then it denotes the dynamic type of the "\texttt{self}" expression:

\[
\text{dynamic_type}(E) = \text{dynamic_type}(\texttt{self}) \leq C
\]

• Note: The meaning of \texttt{SELF_TYPE} depends on where it appears
 - We write \texttt{SELF_TYPE}_c to refer to an occurrence of \texttt{SELF_TYPE} in the body of \texttt{C}
Type Checking

• This suggests a typing rule:
 \[\text{SELF_TYPE}_c \leq C \]

• This rule has an important consequence:
 - In type checking it is always safe to replace \(\text{SELF_TYPE}_c \) by \(C \)

• This suggests one way to handle \(\text{SELF_TYPE} \):
 - Replace all occurrences of \(\text{SELF_TYPE}_c \) by \(C \)

• This would be correct but it is like not having \(\text{SELF_TYPE} \) at all (whoops!)
Operations on SELF_TYPE

• Recall the operations on types
 - \(T_1 \leq T_2 \) \(T_1 \) is a subtype of \(T_2 \)
 - \(\text{lub}(T_1,T_2) \) the least-upper bound of \(T_1 \) and \(T_2 \)

• We must extend these operations to handle SELF_TYPE

• Might take some time ...
Medieval History

• This collection of verse and prose tales by Geoffrey Chaucer describes the stories told by a group of travelers. The stories present an oblique critique of society and the church. It was influential in promoting the English vernacular (as opposed to the more stylish French or Latin) as a vehicle for literature.
Medical History

- This 18th century Swedish botanist introduced the modern taxonomy used to classify plants and animals. His influential Systema Naturae spearheaded and popularized the use of “two word” descriptors: a generic name (genus) and a specific name (species).
This 1983 adventure game designed by Roberta Williams described Sir Graham's attempts to recover the three magical treasures of Daventry and become the next king. It featured a parser for simple textual commands (e.g., "get carrot") and spawned numerous sequels.
Real-World Languages

• This is the second-largest Slavic language (after Russian but ahead of Ukranian). It features an extended Latin alphabet, high inflection, no articles, free word order, and mostly S-V-O sentences. Stanisław Lem is the most famous science fiction and fantasy writer in this language.
Extending \leq

Let T and T' be any types except SELF_TYPE. There are four cases in the definition of \leq:

- **SELF_TYPE$_C \leq T$ if $C \leq T$**
 - SELF_TYPE$_C$ can be any subtype of C
 - This includes C itself
 - Thus this is the most flexible rule we can allow

- **SELF_TYPE$_C \leq$ SELF_TYPE$_C$**
 - SELF_TYPE$_C$ is the type of the “self” expression
 - In Cool we never need to compare SELF_TYPEs coming from different classes
Extending \leq (Cont.)

- $T \leq \text{SELF_TYPE}_C$ always false

 Note: SELF_TYPE_C can denote any subtype of C.

- $T \leq T'$ (according to the rules from before)

Based on these rules we can extend lub ...
Extending lub(T,T’)

Let T and T’ be any types except SELF_TYPE

Again there are four cases:

- lub(SELF_TYPE_c, SELF_TYPE_c) = SELF_TYPE_c

- lub(SELF_TYPE_c, T) = lub(C, T)
 This is the best we can do because SELF_TYPE_c \leq C

- lub(T, SELF_TYPE_c) = lub(C, T)

- lub(T, T’) defined as before
Where Can SELF_TYPE Appear in COOL?

- The parser checks that SELF_TYPE appears only where a type is expected
- But SELF_TYPE is not allowed everywhere a type can appear:
 - `class T inherits T' {...}`
 - `T, T'` cannot be SELF_TYPE
 - Because SELF_TYPE is never a dynamic type
 - `x : T`
 - `T` can be SELF_TYPE
 - An attribute whose type is SELF_TYPE

#42
Where Can SELF_TYPE Appear in COOL?

1. let $x : T$ in E
 - T can be SELF_TYPE
 - x has type SELF_TYPE_C

2. new T
 - T can be SELF_TYPE
 - Creates an object of the same type as self
 - $m@T(E_1,\ldots,E_n)$
 - T cannot be SELF_TYPE
Typing Rules for SELF_TYPE

• Since occurrences of SELF_TYPE depend on the enclosing class we need to carry more context during type checking

• New form of the typing judgment:

\[O, M, C \vdash e : T \]

(An expression e occurring in the body of C has static type T given a variable type environment O and method signatures M)

OMC = “Oh My Cool!” ?
Type Checking Rules

• The next step is to design type rules using SELF_TYPE for each language construct

• Most of the rules remain the same except that \(\leq \) and lub are the new ones

• Example:

\[
\begin{align*}
O(id) &= T_0 \\
O,M,C \vdash e_1 : T_1 \\
T_1 &\leq T_0 \\
\hline
O,M,C \vdash id \leftarrow e_1 : T_1
\end{align*}
\]
What’s Different?

• Recall the old rule for dispatch

\[O,M,C \vdash e_0 : T_0 \]

... \[O,M,C \vdash e_n : T_n \]

\[M(T_0, f) = (T_1',...,T_n',T_{n+1}') \]

\[T_{n+1}' \neq \text{SELF_TYPE} \]

\[T_i \leq T_i' \quad 1 \leq i \leq n \]

\[O,M,C \vdash e_0.f(e_1,...,e_n) : T_{n+1}' \]
The Big Rule for SELF_TYPE

- If the return type of the method is SELF_TYPE then the type of the dispatch is the type of the dispatch expression:

\[
\text{O}, \text{M}, \text{C} \vdash e_0 : T_0
\]

...

\[
\text{O}, \text{M}, \text{C} \vdash e_n : T_n
\]

\[
M(T_0, f) = (T_1', \ldots, T_n', \text{SELF_TYPE})
\]

\[
T_i \leq T_i' \quad 1 \leq i \leq n
\]

\[
\text{O}, \text{M}, \text{C} \vdash e_0.f(e_1, \ldots, e_n) : T_0
\]
What’s Different?

- Note this rule handles the Stock example
- Formal parameters cannot be SELF_TYPE
- Actual arguments can be SELF_TYPE
 - The extended \(\leq \) relation handles this case
- The type \(T_0 \) of the dispatch expression could be SELF_TYPE
 - Which class is used to find the declaration of \(f \)?
 - Answer: it is safe to use the class where the dispatch appears
Static Dispatch

• Recall the original rule for static dispatch

\[O, M, C \vdash e_0 : T_0 \]

\[\ldots \]

\[O, M, C \vdash e_n : T_n \]

\[T_0 \leq T \]

\[M(T, f) = (T_1', \ldots, T_n', T_{n+1}') \]

\[T_{n+1}' \neq \text{SELF_TYPE} \]

\[T_i \leq T_i' \quad \text{for } 1 \leq i \leq n \]

\[O, M, C \vdash e_0@T.f(e_1, \ldots, e_n) : T_{n+1}' \]
Static Dispatch

• If the return type of the method is `SELF_TYPE` we have:

\[
O,M,C \vdash e_0 : T_0
\]

\[
\vdots
\]

\[
O,M,C \vdash e_n : T_n
\]

\[
T_0 \leq T
\]

\[
M(T, f) = (T_1', \ldots, T_n', \text{SELF_TYPE})
\]

\[
T_i \leq T_i' \quad 1 \leq i \leq n
\]

\[
O,M,C \vdash e_0@T.f(e_1, \ldots, e_n) : T_0
\]
Static Dispatch

• Why is this rule correct?

• If we dispatch a method returning `SELF_TYPE` in class `T`, don’t we get back a `T`?

• No. `SELF_TYPE` is the type of the self parameter, which may be a subtype of the class in which the method body appears
 - *Not* the class in which the call appears!

• The static dispatch class cannot be `SELF_TYPE`
New Rules

• There are two new rules using SELF_TYPE

\[O,M,C \vdash \text{self} : \text{SELF_TYPE}_c \]

\[O,M,C \vdash \text{new SELF_TYPE} : \text{SELF_TYPE}_c \]

• There are a number of other places where SELF_TYPE is used
Where is SELF_TYPE Illegal in COOL?

m(x : T) : T’ { ... }

- Only T’ can be SELF_TYPE!

What could go wrong if T were SELF_TYPE?

class A { comp(x : SELF_TYPE) : Bool {...}; }

class B inherits A {
 b() : int { ... };
 comp(y : SELF_TYPE) : Bool { ... y.b() ...}; }

... let x : A ← new B in ... x.comp(new A); ...
...
Summary of SELF_TYPE

• The extended \leq and lub operations can do a lot of the work. Implement them to handle SELF_TYPE

• SELF_TYPE can be used only in a few places. Be sure it isn’t used anywhere else.

• A use of SELF_TYPE always refers to any subtype in the current class
 - The exception is the type checking of dispatch.
 - SELF_TYPE as the return type in an invoked method might have nothing to do with the current class
Why Cover SELF_TYPE?

• SELF_TYPE is a research idea
 - It adds more expressiveness to the type system
 - Without allowing in any “bad” programs

• SELF_TYPE is itself not so important
 - except for the project

• Rather, SELF_TYPE is meant to illustrate that type checking can be quite subtle

• In practice, there should be a balance between the complexity of the type system and its expressiveness
Type Systems

• The rules in these lecture were Cool-specific
 - Other languages have very different rules
 - We’ll survey a few more type systems later

• General themes
 - Type rules are defined on the structure of expressions
 - Types of variables are modeled by an environment

• Types are a play between flexibility and safety
Homework

- PA4t Testing Due Today
- PA4c Checkpoint Due Wednesday
- WA4 Due Next Monday