Lexical Analysis

Finite Automata

(Part 2 of 2)
Cunning Plan

- Regular expressions provide a concise notation for **string patterns**
- Use in lexical analysis requires extensions
 - To resolve ambiguities
 - To handle errors
- Good algorithms known (next)
 - Require only single pass over the input
 - Few operations per character (table lookup)
One-Slide Summary

- **Finite automata** are formal models of computation that can accept regular languages corresponding to regular expressions.
- **Nondeterministic** finite automata (NFA) feature epsilon transitions and multiple outgoing edges for the same input symbol.
- Regular expressions can be **converted** to NFAs.
- Tools will **generate** DFA-based lexer code for you from regular expressions.
Finite Automata

- Regular expressions = specification
- Finite automata = implementation

- A finite automaton consists of
 - An input alphabet Σ
 - A set of states S
 - A start state n
 - A set of accepting states $F \subseteq S$
 - A set of transitions $\text{state} \rightarrow \text{input} \text{ state}$
Finite Automata

- Transition
 \[s_1 \rightarrow^{a} s_2 \]

- Is read
 In state \(s_1 \) on input “a” go to state \(s_2 \)

- If end of input
 - If in accepting state \(\Rightarrow \) accept
 - Otherwise \(\Rightarrow \) reject

- If still input, no transitions possible \(\Rightarrow \) reject
Finite Automata State Graphs

- A state
- The start state
- An accepting state
- A transition

You can hand-write WA1.
A Simple Example

• A finite automaton that accepts only “1”

• A finite automaton accepts a string if we can follow transitions labeled with the characters in the string from the start to some accepting state
Another Simple Example

- A finite automaton accepting any number of 1’s followed by a single 0
- Alphabet \(\Sigma = \{0,1\} \)

Check that “1110” is accepted but “110…” is not
And Another Example

• Alphabet $\Sigma = \{0,1\}$
• What language does this recognize?
And A Fourth Example

• Alphabet still $\Sigma = \{ 0, 1 \}$

• The operation of the automaton is not completely defined by the input
 - On input “11” the automaton could be in either state
Epsilon Moves

• Another kind of transition: ε-moves

- Machine can move from state A to state B without reading input
Deterministic and Nondeterministic Automata

- **Deterministic Finite Automata (DFA)**
 - One transition per input per state
 - No ε-moves

- **Nondeterministic Finite Automata (NFA)**
 - Can have multiple transitions for one input in a given state
 - Can have ε-moves

- Finite automata have finite memory
 - Need only to encode the current state
Execution of Finite Automata

- A DFA can take only one path through the state graph
 - Completely determined by input

- NFAs can choose
 - Whether to make ε-moves
 - Which of multiple transitions for a single input to take
Acceptance of NFAs

• An NFA can get into multiple states

• Input: 1 0 1

• Rule: NFA accepts if it can get in a final state
NFA vs. DFA (1)

- NFAs and DFAs recognize the **same** set of languages (regular languages)
 - They have the same **expressive power**

- DFAs are easier to implement
 - There are no choices to consider
NFA vs. DFA (2)

• For a given language the NFA can be simpler than the DFA

• DFA can be exponentially larger than NFA
Natural Languages

- This North Germanic language is generally mutually intelligible with Norwegian and Danish, and descends from Old Norse of the Viking Era to a modern speaking population of about 10 million people. The language contains two genders, nouns that are rarely inflected, and a typical subject-verb-object ordering. Its home country is one of the largest music exporters of the modern world, often targeting English-speaking audiences. Bands such as Ace of Base, ABBA and Roxette are examples, with over 420m combined album sales.
Unnatural Languages

- This stack-based structured computer programming language appeared in the 1970's and went on to influence PostScript and RPL. It is typeless and is often used in bootloaders and embedded applications. Example:

 \[25 \times 10 + 50\]

- Simple C Program:

  ```c
  int floor5(int v) { return (v < 6) ? 5 : (v - 1); }
  ```

- Same program in *this* Language:

  ```plaintext
  : FLOOR5 ( n -- n' ) DUP 6 < IF DROP 5 ELSE 1 - THEN ;
  ```
Regular Expressions to Finite Automata

• High-level sketch

NFA

Regular expressions

Lexical Specification

DFA

Table-driven Implementation of DFA
Regular Expressions to NFA (1)

• For each kind of rexp, define an NFA
 - Notation: NFA for rexp A

• For ε

• For input a
Regular Expressions to NFA (2)

• For AB

• For $A \mid B$
Regular Expressions to NFA (3)

• For A^*

```
DO YOU BELIEVE OUR DESTINIES ARE CONTROLLED BY THE STARS?

NO, I THINK WE CAN DO WHATEVER WE WANT WITH OUR LIVES.

NOT TO HEAR MOM AND DAD TELL IT.
```
Example of RegExp -> NFA Conversion

• Consider the regular expression
 \[(1 \mid 0)^* 1\]

• The NFA is
Overarching Plan

- Regular expressions
- Lexical Specification
- Table-driven Implementation of DFA

NFA

DFA

Thomas Cole – Evening in Arcady (1843)
NFA to DFA: The Trick

• Simulate the NFA

• Each state of DFA
 = a non-empty *subset of states* of the NFA

• Start state
 = the set of NFA states reachable through \(\varepsilon \)-moves from NFA start state

• Add a transition \(S \xrightarrow{a} S' \) to DFA iff
 - \(S' \) is the set of NFA states reachable from the states in \(S \) after seeing the input \(a \)
 • considering \(\varepsilon \)-moves as well
NFA \rightarrow DFA Example
NFA \rightarrow DFA: Remark

- An NFA may be in many states at any time
- How many different states?
- If there are N states, the NFA must be in some subset of those N states
- How many non-empty subsets are there?
 - $2^N - 1 = \text{finitely many}$
Implementation

- A DFA can be implemented by a 2D table T
 - One dimension is “states”
 - Other dimension is “input symbols”
 - For every transition $S_i \rightarrow^a S_k$ define $T[i,a] = k$

- DFA “execution”
 - If in state S_i and input a, read $T[i,a] = k$ and skip to state S_k
 - Very efficient
Table Implementation of a DFA

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>T</td>
<td>U</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>U</td>
</tr>
<tr>
<td>U</td>
<td>T</td>
<td>U</td>
</tr>
</tbody>
</table>
Implementation (Cont.)

- NFA → DFA conversion is at the heart of tools such as flex or ocamllex

- But, DFAs can be huge

- In practice, flex-like tools trade off speed for space in the choice of NFA and DFA representations
PA2: Lexical Analysis

• Correctness is job #1.
 - And job #2 and #3!

• Tips on building large systems:
 - Keep it simple
 - Design systems that can be tested
 - Don’t optimize prematurely
 - It is easier to modify a working system than to get a system working
Lexical Analyzer Generator

- Tools like *lex* and *flex* and *ocamllex* will build lexers for you!
- You must use such a tool for PA2

I’ll explain *ocamllex*; others are similar
 - See PA2 documentation
Ocamllex “lexer.mll” file

{
 (* raw preamble code
 type declarations, utility functions, etc. *)
}

let re_name_i = re_i

rule normal_tokens = parse
 re_1 { token_1 }
 | re_2 { token_2 }
and special_tokens = parse
 | re_n { token_n }
Example “lexer.mll”

```ml
{  
  type token = Tok_Integer of int (* 123 *)  
  | Tok_Divide (* / *)  
}

let digit = ['0' - '9']

rule initial = parse
  '/'
    { Tok_Divide }
| digit digit* { let token_string = Lexing.lexeme lexbuf in  
                let token_val = int_of_string token_string in  
                Tok_Integer(token_val) }
| _     { Printf.printf "Error!\n"; exit 1 }
```
Adding Winged Comments

```ml
{  
    type token = Tok_Integer of int  (* 123 *)  
    | Tok_Divide  (* / *)  
}

let digit = ['0' - '9']
rule initial = parse

    "//"  { eol_comment }
| '/'   { Tok_Divide }
| digit digit*  { let token_string = Lexing.lexeme lexbuf in  
                        let token_val = int_of_string token_string in  
                        Tok_Integer(token_val) }
| _     { Printf.printf "Error!\n"; exit 1 }

and eol_comment = parse

    '\n'  { initial lexbuf }
| _     { eol_comment lexbuf }

```
Using Lexical Analyzer Generators

$ ocamllex lexer.mll
45 states, 1083 transitions, table size 4602 bytes

(* your main.ml file ... *)
let file_input = open_in "file.cl" in
let lexbuf = Lexing.from_channel file_input in
let token = Lexer.initial lexbuf in
match token with
 | Tok_Divide -> printf "Divide Token!\n"
 | Tok_Integer(x) -> printf "Integer Token = %d\n" x
How Big Is PA2?

• The reference “lexer.mll” file is 88 lines
 - Perhaps another 20 lines to keep track of input line numbers
 - Perhaps another 20 lines to open the file and get a list of tokens
 - Then 65 lines to serialize the output
 - I’m sure it’s possible to be smaller!

• Conclusion:
 - This isn’t a code slog, it’s about careful forethought and precision.
Warning!

- You may be tempted to use OCaml for PA2 based on that demo.
- However, you probably want to save OCaml for one of the harder assignments later.
Test Yourself! Exam Practice.

- Are practical parsers and scanners based on deterministic or non-deterministic automata?
- How can regular expressions be used to specify nested constructs?
- How is a two-dimensional transition table used in table-driven scanning?
Homework

- Textbook Reading, CD Reading - 2.4