Semantics of Regular Expressions

1 Operational Semantics

\[\vdash r_1 \text{ matches } s_1 \text{ leaving } s_2 \quad \vdash r_2 \text{ matches } s_2 \text{ leaving } s_3 \]

\[\vdash r_1 r_2 \text{ matches } s_1 \text{ leaving } s_3 \]

\[\vdash r_1 \text{ matches } s_1 \text{ leaving } s_2 \]

\[\vdash r_1 | r_2 \text{ matches } s_1 \text{ leaving } s_2 \]

\[\vdash r_2 \text{ matches } s_1 \text{ leaving } s_2 \]

\[\vdash r_1 | r_2 \text{ matches } s_1 \text{ leaving } s_2 \]

\[\vdash r_1 \ast \text{ matches } s_1 \text{ leaving } s_1 \]

\[\vdash r \text{ matches } s_1 \text{ leaving } s_2 \quad \vdash r \ast \text{ matches } s_2 \text{ leaving } s_3 \]

\[\vdash r_1 \ast \text{ matches } s_1 \text{ leaving } s_3 \]

2 Denotational Semantics

2.1 Disjunction

\[\mathcal{R}[r_1 r_2](s) = \mathcal{R}[r_1](s) \cup \mathcal{R}[r_2](s) \]

or, equivalently:

\[\mathcal{R}[r_1 r_2](s) = \{ x | x \in \mathcal{R}[r_1](s) \lor x \in \mathcal{R}[r_2](s) \} \]

2.2 Concatenation

\[\mathcal{R}[r_1 r_2](s) = \{ x | \exists y. y \in \mathcal{R}[r_1](s) \land x \in \mathcal{R}[r_2](y) \} \]

or, equivalently:

\[\mathcal{R}[r_1 r_2](s) = \bigcup_{y \in \mathcal{R}[r_1]} \mathcal{R}[r_2](y) \]

2.3 Kleene Closure

Let \(r^0 \equiv \text{empty} \) and \(r^n \equiv r_1 r_2 \ldots r_n \) (i.e., \(r \) concatenated with itself \(n \) times).

\[\mathcal{R}[r^*](s) = \bigcup_{k \in 0\ldots\infty} \mathcal{R}[r^k](s) \]

or, equivalently:

Consider the unwinding equation \(r^* \equiv rr^* \). We define a context \(C \) (a regexp with a hole) so that \(C \equiv r^* \). Note that \(r^* \equiv C[r^*] \). The meaning of a context is a semantic function \(F \) such that \(F[C[r^*]] = F[r^*] \). The type of \(F \) is:

\[F : (S \rightarrow \mathcal{P}(S)) \rightarrow (S \rightarrow \mathcal{P}(S)) \]

We want the least fixed point of \(F \), where \(\text{least} \) is interpreted with respect to set inclusion \(\subseteq \). We assert that \(F \) is monotonic and continuous. Let \(F^0(W) = \mathcal{R}[\text{empty}] = \lambda s.\{s\} \). We define \(F^{k+1} \) as follows:

\[F^{k+1}(W) = F F^k(W) = \lambda s. \bigcup_{y \in \mathcal{R}[r](y)} F^k(y) \]

Then we want the least fixed point:

\[\mathcal{R}[r^*](s) = \bigcup_{k} F^k(\lambda s.\{s\}) = \bigcup_{k} F^k(\lambda s.\{s\}) \]

3 Incorrect Answers

The following definition of Kleene star is incorrect:

\[\mathcal{R}[r^*](s) \neq \{s\} \cup \mathcal{R}[rr^*] \]

Using the rule for concatenation above, it is equivalent to the following also-incorrect definition:

\[\mathcal{R}[r^*](s) \neq \{s\} \cup \{ x \mid \exists y. y \in \mathcal{R}[r](s) \land x \in \mathcal{R}[r^*](y) \} \]

The definitions are incorrect because they define \(\mathcal{R}[r^*] \) directly in terms of itself. Such circular definitions correspond to implementation code such as:

\begin{verbatim}
1 | Star(r) -> (* incorrect *)
2 | matches (Or(Empty, Concat(r, Star(r)))) s
\end{verbatim}

On regular expressions such as \(r = \text{empty}\ast \), this leads to an infinite loop (and usually a stack overflow).

There are two typical approaches for a correct implementation. The first chooses some large \(k \) (say, based on the length of the input string \(s \)) and computes \(\cup_{i=0..k} \mathcal{R}[r^i](s) \). The second actually computes the fixed point (instead of picking \(k \) in advance) by repeating the process until nothing new is added to the answer.

Regular expression matching is used almost everywhere. Note that understanding the denotational semantics actually helps one to write a real-world program correctly.