Them's fightin' words, mister...unless 'n, o'course, them's just semantics.
Today’s Cunning Plan

• Review, Truth, and Provability
• Large-Step Opsem Commentary
• Small-Step Contextual Semantics
 - Reductions, Redexes, and Contexts
• Applications and Recent Research
Bookkeeping

- Hookkeeper (wire ring that holds a fly-fishing hook in place)
- Tattooee
- Bookkeeper
 - Subbookkeeper (!)
- Sweettooth
60 Second Summary - Semantics

• A **formal semantics** is a system for assigning **meanings** to **programs**.

• For now, programs are IMP commands and expressions.

• In **operational semantics** the meaning of a program is “what it evaluates to”.

• Any opsem system gives **rules of inference** that tell you how to evaluate programs.
Summary - Judgments

- Rules of inference allow you to derive judgments (“something that is knowable”) like
 \[
 \langle e, \sigma \rangle \downarrow n
 \]
 - In state \(\sigma \), expression \(e \) evaluates to \(n \)
 \[
 \langle c, \sigma \rangle \downarrow \sigma'
 \]
 - After evaluating command \(c \) in state \(\sigma \) the new state will be \(\sigma' \)

- State \(\sigma \) maps variables to values (\(\sigma : \mathbb{L} \rightarrow \mathbb{Z} \))

- Inferences equivalent up to variable renaming:
 \[
 \langle c, \sigma \rangle \downarrow \sigma' \quad === \quad \langle c', \sigma_7 \rangle \downarrow \sigma_8
 \]
Notation: Rules of Inference

- We express the evaluation rules as **rules of inference** for our judgment
 - called the **derivation rules** for the judgment
 - also called the **evaluation rules** (for operational semantics)
- In general, we have **one rule for each language construct**:

\[
\begin{align*}
\langle e_1, \sigma \rangle &\Downarrow n_1 \\
\langle e_2, \sigma \rangle &\Downarrow n_2 \\
\langle e_1 + e_2, \sigma \rangle &\Downarrow n_1 + n_2
\end{align*}
\]

This is the only rule for \(e_1 + e_2 \)
Evaluation By Inversion

• We must find n_1 and n_2 such that $e_1 \Downarrow n_1$ and $e_2 \Downarrow n_2$ are derivable
 - This is done recursively

• If there is exactly one rule for each kind of expression we say that the rules are syntax-directed
 - At each step at most one rule applies
 - This allows a simple evaluation procedure as above (recursive tree-walk)
 - True for our Aexp but not Bexp.
Summary - Rules

- **Rules of inference** list the hypotheses necessary to arrive at a conclusion

\[
\begin{align*}
<x, \sigma> & \downarrow \sigma(x) \\
<e_1, \sigma> & \downarrow n_1 \\
<e_2, \sigma> & \downarrow n_2 \\
<e_1 - e_2, \sigma> & \downarrow n_1 \text{ minus } n_2
\end{align*}
\]

- A **derivation** involves interlocking (well-formed) instances of rules of inference

\[
\begin{align*}
<4, \sigma_3> & \downarrow 4 \\
<2, \sigma_3> & \downarrow 2 \\
<4*2, \sigma_3> & \downarrow 8 \\
<6, \sigma_3> & \downarrow 6 \\
<(4*2) - 6, \sigma_3> & \downarrow 2
\end{align*}
\]
Operational Semantics
Small-Step Semantics

Sherlock saw the man using binoculars.
Sherlock saw the man using binoculars.
Provability

• Given an opsem system, \(\langle e, \sigma \rangle \downarrow n \) is **provable** *if there exists* a well-formed derivation with \(\langle e, \sigma \rangle \downarrow n \) as its conclusion
 - “well-formed” = “every step in the derivation is a valid instance of one of the rules of inference for this opsem system”
 - “\(\vdash \langle e, \sigma \rangle \downarrow n \)” = “it is provable that \(\langle e, \sigma \rangle \downarrow n \)”

• We would *like* truth and provability to be closely related
Truth?

• “A Vorlon said understanding is a three-edged sword. Your side, their side and the truth.”
 - Sheridan, Babylon 5, *Into The Fire*

• We will **not formally define “truth”** yet

• Instead we appeal to your intuition
 - \[<2+2, \sigma> \downarrow 4\] -- *should be* true
 - \[<2+2, \sigma> \downarrow 5\] -- *should be* false
Completeness

• A proof system (like our operational semantics) is **complete** if every true judgment is provable.

• If we **replaced** the subtract rule with:

\[
\begin{align*}
\langle e_1, \sigma \rangle & \Downarrow n & \langle e_2, \sigma \rangle & \Downarrow 0 \\
\langle e_1 - e_2, \sigma \rangle & \Downarrow n
\end{align*}
\]

• Our opsem would be **incomplete**:
 \[
 \langle 4-2, \sigma \rangle \Downarrow 2 \quad \text{-- true but not provable}
 \]
Consistency

• A proof system is **consistent** (or **sound**) if every provable judgment is true.

• If we *replaced* the subtract rule with:

\[
\begin{align*}
\langle e_1, \sigma \rangle \Downarrow n_1 & \quad \langle e_2, \sigma \rangle \Downarrow n_2 \\
\langle e_1 - e_2, \sigma \rangle \Downarrow n_1 + 3
\end{align*}
\]

• Our opsem would be **inconsistent** (or **unsound**):

- \(\langle 6-1, \sigma \rangle \Downarrow 9 \) -- false but provable

“A foolish consistency is the hobgoblin of little minds, adored by little statesmen and philosophers and divines.”

Desired Traits

• Typically a system (of operational semantics) is always complete (unless you forget a rule)

• If you are not careful, however, your system may be unsound

• Usually that is very bad
 - A paper with an unsound type system is usually rejected
 - Papers often prove (sketch) that a system is sound
 - Recent research (e.g., Engler, ESP) into useful but unsound systems exists, however

• In this class your work should be complete and consistent (e.g., on homework problems)

Dr. Peter Venkman: I'm a little fuzzy on the whole "good/bad" thing here. What do you mean, "bad"?
Dr. Egon Spengler: Try to imagine all life as you know it stopping instantaneously and every molecule in your body exploding at the speed of light.
With That In Mind

- We now return to opsem for IMP

\[\begin{align*}
\langle e, \sigma \rangle \downarrow n & \quad \text{Def: } \sigma[x:= n](x) = n \\
\langle x := e, \sigma \rangle \downarrow \sigma[x := n] & \quad \sigma[x:= n](y) = \sigma(y)
\end{align*}\]

\[\begin{align*}
\langle b, \sigma \rangle \downarrow \text{false} & \\
\langle \text{while } b \text{ do } c, \sigma \rangle \downarrow \sigma & \\
\langle b, \sigma \rangle \downarrow \text{true} & \quad \langle c; \text{ while } b \text{ do } c, \sigma \rangle \downarrow \sigma'
\end{align*}\]

\[\langle \text{while } b \text{ do } c, \sigma \rangle \downarrow \sigma'\]
Command Evaluation Notes

- The order of evaluation is important
 - c_1 is evaluated **before** c_2 in $c_1; c_2$
 - c_2 is **not** evaluated in “if true then c_1 else c_2”
 - c is **not** evaluated in “while false do c”
 - b is evaluated **first** in “if b then c_1 else c_2”
 - this is explicit in the evaluation rules

- Conditional constructs (e.g., $b_1 \lor b_2$) have multiple evaluation rules
 - but only one can be applied at one time
Command Evaluation Trials

• The evaluation rules are **not syntax-directed**
 - See the rules for `while`, `∧`
 - The evaluation might not terminate

• Recall: the evaluation rules suggest an interpreter

• Natural-style semantics has two big disadvantages (continued ...)

Disadvantages of Natural-Style Operational Semantics

• It is hard to talk about commands whose evaluation does not terminate
 - When there is no \(\sigma' \) such that \(<c, \sigma> \downarrow \sigma'\)
 - But that is true also of ill-formed or erroneous commands (in a richer language)!

• It does not give us a way to talk about intermediate states
 - Thus we cannot say that on a parallel machine the execution of two commands is interleaved (= no modeling threads)
Semantics Solution

- **Small-step semantics** addresses these problems
 - Execution is modeled as a (possible infinite) sequence of states

- Not quite as easy as large-step natural semantics, though

- **Contextual semantics** is a small-step semantics where the atomic execution step is a rewrite of the program
Contextual Semantics

• We will define a relation $<c, \sigma> \rightarrow <c', \sigma'>$
 - c' is obtained from c via an atomic rewrite step
 - Evaluation terminates when the program has been rewritten to a terminal program
 • one from which we cannot make further progress
 - For IMP the terminal command is “skip”
 - As long as the command is not “skip” we can make further progress
 • some commands never reduce to skip (e.g., “while true do skip”)

Contextual Derivations

• In small-step contextual semantics, derivations are not tree-structured
• A contextual semantics derivation is a sequence (or list) of atomic rewrites:

\[\langle x+(7-3), \sigma \rangle \rightarrow \langle x+(4), \sigma \rangle \rightarrow \langle 5+4, \sigma \rangle \rightarrow \langle 9, \sigma \rangle \]

\[\sigma(x)=5 \]
What is an Atomic Reduction?

• What is an atomic reduction step?
 - Granularity is a choice of the semantics designer

• How to select the next reduction step, when several are possible?
 - This is the order of evaluation issue
Q: Computer Science

• This American computer scientist won the 2009 Turing award for her work on design of programming language sand software methodology that led to the development of object-oriented programming. In addition to the first high-level language to support distributed programs and notable results on Byzantine fault tolerance, she is perhaps best known for her formulation of object-oriented subtyping.
Correcting English Prose

4. Lizzy drank in the sight of him like a thirst craven man consumes water.

421. "I go here, silly," said Kimi with a proud expression. "And how I might ask? Your scores were not legible for this school."

312. Every member of the Thespians, or anyone who has ever acted in one of our school plays was a pre-Madonna, mellow-dramatic; over-actor and I didn't want to be one of them.

198. Nobody goes into Donovan's Layer, For they sence evil. But Livvy doesn't she see's something no one else does.
Redexes

- A **redex** is a syntactic expression or command that can be reduced (transformed) in one atomic step.
- Redexes are defined via a grammar:

 \[
 r ::= \begin{array}{l}
 x \quad (x \in L) \\
 n_1 + n_2 \\
 x := n \\
 \text{skip}; c \\
 \text{if true then } c_1 \text{ else } c_2 \\
 \text{if false then } c_1 \text{ else } c_2 \\
 \text{while } b \text{ do } c
 \end{array}
 \]

- For brevity, we mix exp and command redexes.
- Note that \((1 + 3) + 2\) is not a redex, but \(1 + 3\) is
Local Reduction Rules for IMP

- One for each redex: \(<r, \sigma> \rightarrow <e, \sigma'> \)
 - means that in state \(\sigma \), the redex \(r \) can be replaced in one step with the expression \(e \)

\[
\begin{align*}
<x, \sigma> & \rightarrow <\sigma(x), \sigma> \\
<n_1 + n_2, \sigma> & \rightarrow <n, \sigma> \quad \text{where } n = n_1 \text{ plus } n_2 \\
<n_1 = n_2, \sigma> & \rightarrow <\text{true}, \sigma> \quad \text{if } n_1 = n_2 \\
x := n, \sigma> & \rightarrow <\text{skip}, \sigma[x := n]> \\
\text{skip}; c, \sigma> & \rightarrow <c, \sigma> \\
\text{if true then } c_1 \text{ else } c_2, \sigma> & \rightarrow <c_1, \sigma> \\
\text{if false then } c_1 \text{ else } c_2, \sigma> & \rightarrow <c_2, \sigma> \\
\text{while } b \text{ do } c, \sigma> & \rightarrow \\
 & \quad <\text{if } b \text{ then } c; \text{ while } b \text{ do } c \text{ else skip}, \sigma>
\end{align*}
\]
The Global Reduction Rule

• General idea of contextual semantics
 - **Decompose** the current expression into the redex-to-reduce-next and the remaining program
 • The remaining program is called a **context**
 - Reduce the redex “r” to some other expression “e”
 - The resulting (reduced) expression consists of “e” with the original context

Not happy? I’ll explain with pictures soon!
As A Picture (1)

(Context)
...
x := 2+2 ;
print x

Step 1: Find The Redex
As A Picture (2)

(Context)

... x := \textcolor{red}{2+2 \ (\text{redex})} \ ;
print x

Step 1: Find The Redex

Step 2: Reduce The Redex
As A Picture (3)

(Context)

...
x := 2+2 (redex) ;
print x

4 (reduced)

Step 1: Find The Redex
Step 2: Reduce The Redex
As A Picture (4)

(Context)
...
x := 4 ;
print x

Step 1: Find The Redex
Step 2: Reduce The Redex
Step 3: Replace It In The Context
Contextual Analysis

• We use H to range over contexts
• We write $H[r]$ for the expression obtained by placing redex r in context H
• Now we can define a small step

If $<r, \sigma> \rightarrow <e, \sigma'>$
then $<H[r], \sigma> \rightarrow <H[e], \sigma'>$
Contexts

• A **context** is like an expression (or command) with a marker • in the place where the redex goes

• Examples:
 - To evaluate “(1 + 3) + 2” we use the redex $1 + 3$ and the context “• + 2”
 - To evaluate “if $x > 2$ then c_1 else c_2” we use the redex x and the context “if • > 2 then c_1 else c_2”
Context Terminology

- A context is also called an “expression with a hole”
- The marker • is sometimes called a hole
- H[r] is the expression obtained from H by replacing • with the redex r

“Avoid context and specifics; generalize and keep repeating the generalization.”
-- Jack Schwartz
Contextual Semantics Example

- \(x := 1 ; x := x + 1 \) with initial state \([x:=0]\)

<table>
<thead>
<tr>
<th><Comm, State></th>
<th>Redex (\bullet)</th>
<th>Context</th>
</tr>
</thead>
<tbody>
<tr>
<td>(<x := 1; x := x+1, [x := 0]>)</td>
<td>(x := 1)</td>
<td>(\bullet; x := x+1)</td>
</tr>
<tr>
<td>(<\text{skip}; x := x+1, [x := 1]>)</td>
<td>(\text{skip}; x := x+1)</td>
<td>(\bullet)</td>
</tr>
<tr>
<td>(<x := x+1, [x := 1]>)</td>
<td>(x)</td>
<td>(x := \bullet + 1)</td>
</tr>
</tbody>
</table>

What happens next?
Contextual Semantics Example

- $x := 1 ; x := x + 1$ with initial state $[x:=0]$

<table>
<thead>
<tr>
<th><Comm, State></th>
<th>Redex</th>
<th>Context</th>
</tr>
</thead>
<tbody>
<tr>
<td>$<x := 1; x := x+1, [x := 0]>$</td>
<td>$x := 1$</td>
<td>$\bullet; x := x+1$</td>
</tr>
<tr>
<td>$<\text{skip}; x := x+1, [x := 1]>$</td>
<td>$\text{skip}; x := x+1$</td>
<td>\bullet</td>
</tr>
<tr>
<td>$<x := x+1, [x := 1]>$</td>
<td>x</td>
<td>$x := \bullet + 1$</td>
</tr>
<tr>
<td>$<x := 1 + 1, [x := 1]>$</td>
<td>$1 + 1$</td>
<td>$x := \bullet$</td>
</tr>
<tr>
<td>$<x := 2, [x := 1]>$</td>
<td>$x := 2$</td>
<td>\bullet</td>
</tr>
<tr>
<td>$<\text{skip}, [x := 2]>$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
More On Contexts

• **Contexts** are defined by a grammar:

\[
H ::= \bullet \mid n + H \\
| H + e \\
| x := H \\
| \text{if } H \text{ then } c_1 \text{ else } c_2 \\
| H; c
\]

• A context has **exactly one** \(\bullet \) marker

• A redex is never a value
What’s In A Context?

- Contexts specify precisely how to find the next redex
 - Consider $e_1 + e_2$ and its decomposition as $H[r]$
 - If e_1 is n_1 and e_2 is n_2 then $H = \bullet$ and $r = n_1 + n_2$
 - If e_1 is n_1 and $e_2 \text{ is not } n_2$ then $H = n_1 + H_2$ and $e_2 = H_2[r]$
 - If $e_1 \text{ is not } n_1$ then $H = H_1 + e_2$ and $e_1 = H_1[r]$
 - In the last two cases the decomposition is done recursively
 - Check that in each case the solution is unique
Unique Next Redex: Proof By Handwaving Examples

- e.g. $c = "c_1; c_2"$ - either
 - $c_1 = \text{skip}$ and then $c = H[\text{skip}; c_2]$ with $H = \bullet$
 - or $c_1 \neq \text{skip}$ and then $c_1 = H[r]$; so $c = H'[r]$ with $H' = H; c_2$

- e.g. $c = "\text{if } b \text{ then } c_1 \text{ else } c_2"$
 - either $b = \text{true}$ or $b = \text{false}$ and then $c = H[r]$ with $H = \bullet$
 - or b is not a value and $b = H[r]$; so $c = H'[r]$ with $H' = \text{if } H \text{ then } c_1 \text{ else } c_2$
Context Decomposition

• Decomposition theorem:
 If c is not “skip” then there exist unique H and r such that c is H[r]
 - “Exist” means progress
 - “Unique” means determinism
Short-Circuit Evaluation

• What if we want to express short-circuit evaluation of \land?

 - Define the following contexts, redexes and local reduction rules

 $$H ::= \ldots \mid H \land b_2$$
 $$r ::= \ldots \mid \text{true} \land b \mid \text{false} \land b$$
 $$<\text{true} \land b, \sigma> \rightarrow <b, \sigma>$$
 $$<\text{false} \land b, \sigma> \rightarrow <\text{false}, \sigma>$$

 - the local reduction kicks in before b_2 is evaluated
Contextual Semantics Summary

• Can view ⋄ as representing the program counter

• The advancement rules for ⋄ are non-trivial
 - At each step the entire command is decomposed
 - This makes contextual semantics inefficient to implement directly

• The major advantage of contextual semantics: it allows a mix of local and global reduction rules
 - For IMP we have only local reduction rules: only the redex is reduced
 - Sometimes it is useful to work on the context too
 - We’ll do that when we study memory allocation, etc.
Reading Real-World Examples

- Cobbe and Felleisen, POPL 2005
- Small-step contextual opsem for Java
- Their rule for object field access:

\[P \vdash \langle E[\text{obj}.fd], S \rangle \leftrightarrow \langle E[F(fd)], S \rangle \]

where \(F = \text{fields}(S(\text{obj})) \) and \(fd \in \text{dom}(F) \)

\[P \vdash \langle E[\text{obj}.fd], S \rangle \rightarrow \langle E[F(fd)], S \rangle \]
- where \(F = \text{fields}(S(\text{obj})) \) and \(fd \in \text{dom}(F) \)

- They use “E” for context, we use “H”
- They use “S” for state, we use “\(\sigma \)”
Lost In Translation

• $P \vdash <H[\text{obj.fd}],\sigma> \rightarrow <H[F(fd)],\sigma>$
 - Where $F=$fields$(\sigma(\text{obj}))$ and $fd \in \text{dom}(F)$

• They have “$P \vdash$”, but that just means “it can be proved in our system given P”

• $<H[\text{obj.fd}],\sigma> \rightarrow <H[F(fd)],\sigma>$
 - Where $F=$fields$(\sigma(\text{obj}))$ and $fd \in \text{dom}(F)$
Lost In Translation 2

- \(<H[\text{obj}.fd],\sigma> \rightarrow <H[F(fd)],\sigma> \)
 - Where \(F=\text{fields}(\sigma(\text{obj})) \) and \(fd \in \text{dom}(F) \)

- They model objects (like \text{obj}), but we do not (yet) - let’s just make \text{fd} a variable:

- \(<H[fd],\sigma> \rightarrow <H[F(fd)],\sigma> \)
 - Where \(F=\sigma \) and \(fd \in L \)

- Which is just our variable-lookup rule:

- \(<H[fd],\sigma> \rightarrow <H[\sigma(fd)],\sigma> \) (when \(fd \in L \))
“Sleep On It”

“The Semantics Pillow”

1. \[e_0 \rightarrow e'_0 \]
 \[e_0 + e_1 \rightarrow e'_0 + e_1 \]

2. \[e_1 \rightarrow e'_1 \]
 \[m_0 + e_1 \rightarrow m_0 + e'_1 \]

3. \[m_0 + m_1 \rightarrow m_2 \]

“Learn while you sleep!”

Only $19.95
Homework

• Homework 1 Due soon
• Reading!