Symbolic Execution
One-Slide Summary

- **Verification Conditions** make axiomatic semantics *practical*. We can compute verification conditions *forward* for use on *unstructured* code (= assembly language). This is sometimes called *symbolic execution*.

- We can add extra invariants or drop paths (dropping is *unsound*) to help verification condition generation *scale*.

- We can model *exceptions, memory operations and data structures* using verification condition generation.
Symbolic Execution

SO I'M READY TO START CODING. DO YOU HAVE THE SPEC?
NOT EXACTLY.

HOW ABOUT AN OUTLINE? OR SOME SCREEN SHOTS?
NO TIME.

WHAT DO YOU HAVE, THEN?
A SCENARIO DIORAMA.

TELL ME YOU'RE KIDDING. JUDGING BY THE DIORAMA, I THINK WE SHOULD USE MANAGED CODE.

I COULD RESTRUCTURE THE PROGRAM'S FLOW OR USE ONE LITTLE 'GOTO' INSTEAD.

EH, SCREW GOOD PRACTICE. HOW BAD CAN IT BE?

\[\text{goto main_sub3}; \]

COMPILE
Not Quite Weakest Preconditions

- Recall what we are trying to do:
 \[\text{false} \iff \text{true} \]

- Construct a verification condition: \(\text{VC}(c, B) \)
 - Our loops will be annotated with loop invariants!
 - \(\text{VC} \) is guaranteed to be stronger than \(\text{WP} \)
 - But still weaker than \(A \): \(A \Rightarrow \text{VC}(c, B) \Rightarrow \text{WP}(c, B) \)
Groundwork

• Factor out the hard work
 - Loop invariants
 - Function specifications (pre- and post-conditions)

• Assume programs are annotated with such specs
 - Good software engineering practice anyway
 - Requiring annotations = Kiss of Death?

• New form of while that includes a loop invariant:
 \[
 \text{while}_{\text{Inv}} b \text{ do } c
 \]
 - Invariant formula \(\text{Inv} \) must hold every time before \(b \) is evaluated

• A process for computing VC(annotated_command, post_condition) is called VCGen
Verification Condition Generation

- Mostly follows the definition of the wp function:

 \[
 \begin{align*}
 \text{VC}(\text{skip}, B) &= B \\
 \text{VC}(c_1; c_2, B) &= \text{VC}(c_1, \text{VC}(c_2, B)) \\
 \text{VC}(\text{if } b \text{ then } c_1 \text{ else } c_2, B) &= b \Rightarrow \text{VC}(c_1, B) \land \neg b \Rightarrow \text{VC}(c_2, B) \\
 \text{VC}(x := e, B) &= [e/x] B \\
 \text{VC}(\text{let } x = e \text{ in } c, B) &= [e/x] \text{ VC}(c, B) \\
 \text{VC}(\text{while}_\text{Inv } b \text{ do } c, B) &= ?
 \end{align*}
 \]
VCGen for WHILE

\[VC(\text{while}_{\text{Inv}} e \text{ do } c, B) = \]
\[\text{Inv} \land (\forall x_1...x_n. \text{Inv} \Rightarrow (e \Rightarrow VC(c, \text{Inv}) \land \neg e \Rightarrow B)) \]

- \text{Inv} holds on entry
- \text{Inv} is preserved in an \textit{arbitrary} iteration
- B holds when the loop terminates in an \textit{arbitrary} iteration

- \text{Inv} is the loop invariant (provided externally)
- \(x_1, ..., x_n \) are all the variables modified in \(c \)
- The \(\forall \) is similar to the \(\forall \) in mathematical induction:

\[P(0) \land \forall n \in \mathbb{N}. P(n) \Rightarrow P(n+1) \]
Example VCGen Problem

• Let’s compute the VC of this program with respect to post-condition \(x \neq 0 \)

\[
\begin{align*}
x &= 0; \\
y &= 2; \\
\text{while}_{x+y=2} \quad y > 0 \quad \text{do} \\
& \quad y := y - 1; \\
& \quad x := x + 1
\end{align*}
\]

First, what do we expect? What pre-condition do we need to ensure \(x \neq 0 \) after this?
Example of VC

- By the sequencing rule, first we do the while loop (call it w):

 $$\text{while}_{x+y=2} \, y > 0 \, \text{do}$$
 $$y := y - 1;$$
 $$x := x + 1$$

- $\text{VCGen}(w, \, x \neq 0) = x+y=2 \land$
 $$\forall x,y. \, x+y=2 \Rightarrow (y>0 \Rightarrow \text{VC}(c, \, x+y=2) \land y>0 \Rightarrow x \neq 0)$$

- $\text{VCGen}(y:=y-1 \, ; \, x:=x+1, \, x+y=2) =$
 $$(x+1) + (y-1) = 2$$

- w Result: $x+y=2 \land$
 $$\forall x,y. \, x+y=2 \Rightarrow (y>0 \Rightarrow (x+1)+(y-1)=2 \land y\leq0 \Rightarrow x \neq 0)$$
Example of VC (2)

- \(VC(w, x \neq 0) = x+y=2 \land\)
 \(\forall x, y. x+y=2 \Rightarrow\)
 \((y>0 \Rightarrow (x+1)+(y-1)=2 \land y\leq 0 \Rightarrow x \neq 0)\)

- \(VC(x := 0; y := 2 ; w, x \neq 0) = 0+2=2 \land\)
 \(\forall x, y. x+y=2 \Rightarrow\)
 \((y>0 \Rightarrow (x+1)+(y-1)=2 \land y\leq 0 \Rightarrow x \neq 0)\)

- So now we ask an automated theorem prover to prove it.
Thoreau, Thoreau, Thoreau

$./Simplify
> (AND (EQ (+ 0 2) 2)
 (FORALL (x y) (IMPLIES (EQ (+ x y) 2)
 (AND (IMPLIES (> y 0)
 (EQ (+ (+ x 1)(- y 1)) 2))
 (IMPLIES (<= y 0) (NEQ x 0)))))

1: Valid.

• Huzzah!
• Simplify is a non-trivial five megabytes
• Z3 is 15+ megabytes
Can We Mess Up VCGen?

- The invariant is from the user (= the adversary, the untrusted code base)
- Let’s use a loop invariant that is too weak, like “true”.
 \[VC = \text{true} \land \forall x,y. \text{true} \Rightarrow (y>0 \Rightarrow \text{true} \land y\leq 0 \Rightarrow x \neq 0) \]
- Let’s use a loop invariant that is false, like “\(x \neq 0\)”.
 \[VC = 0 \neq 0 \land \forall x,y. x \neq 0 \Rightarrow (y>0 \Rightarrow x+1 \neq 0 \land y\leq 0 \Rightarrow x \neq 0) \]
Emerson, Emerson, Emerson

$./Simplify
> (AND TRUE
 (FORALL (x y) (IMPLIES TRUE
 (AND (IMPLIES (> y 0) TRUE)
 (IMPLIES (<= y 0) (NEQ x 0)))))

Counterexample: context:
 (AND
 (EQ x 0)
 (<= y 0)
)
1: Invalid.

- OK, so we won’t be fooled.
Soundness of VCGen

• Simple form

\[\vdash \{ \text{VC}(c, B) \} \ c \ \{ B \} \]

• Or equivalently that

\[\vdash \text{VC}(c, B) \Rightarrow \text{wp}(c, B) \]

• Proof is by induction on the structure of c
 - Try it!

• Soundness holds for any choice of invariant!

• Next: extensions to Symbolic Execution
Where Are We?

- **Axiomatic Semantics**: the meaning of a program is what is true after it executes.
- **Hoare Triples**: \{A\} \implies \{B\}
- **Weakest Precondition**: \{ WP(c,B) \} \implies \{B\}
- **Verification Condition**: \(A \Rightarrow VC(c,B) \Rightarrow WP(c,b) \)
 - Requires Loop Invariants
 - Backward VC works for structured programs
 - Here we are today ...
 - Forward VC (*Symbolic Exec*) works for assembly
Today’s Cunning Plan

• Symbolic Execution & Forward VCGen
• Handling Exponential Blowup
 - Invariants
 - Dropping Paths
• VCGen For Exceptions (double trouble)
• VCGen For Memory (McCarthyism)
• VCGen For Structures (have a field day)
• VCGen For “Dictator For Life”
VC and Invariants

• Consider the Hoare triple:

\{x \leq 0\} \text{while}_{I(x)} x \leq 5 \text{ do } x := x + 1 \{x = 6\}

• The VC for this is:

\begin{align*}
x \leq 0 & \implies I(x) \land \forall x. (I(x) \implies (x > 5 \implies x = 6) \\
& \quad \land x \leq 5 \implies I(x+1)
\end{align*}

• Requirements on the invariant:

- Holds on entry \quad \forall x. x \leq 0 \implies I(x)
- Preserved by the body \quad \forall x. I(x) \land x \leq 5 \implies I(x+1)
- Useful \quad \forall x. I(x) \land x > 5 \implies x = 6

• Check that I(x) = x \leq 6 satisfies all constraints
Forward VCGen

- Traditionally the VC is computed backwards
 - That’s how we’ve been doing it in class
 - Backwards works well for structured code
- But it can also be computed forward
 - Works even for un-structured languages (e.g., assembly language)
 - Uses symbolic execution, a technique that has broad applications in program analysis
 - e.g., the PREfix tool (Intrinsa, Microsoft) does this
 - Test input generation, document generation, specification mining, security analyses, ...
Forward VC Gen Intuition

- Consider the sequence of assignments
 \[x_1 := e_1; \ x_2 := e_2 \]
- The \(\text{VC}(c, B) = [e_1/x_1]([e_2/x_2] B) \)
 \[= [e_1/x_1, \ e_2[e_1/x_1]/x_2] \ B \]
- We can compute the substitution in a forward way using *symbolic execution* (aka *symbolic evaluation*)
 - Keep a symbolic state that maps variables to expressions
 - Initially, \(\Sigma_0 = \{ \} \)
 - After \(x_1 := e_1 \), \(\Sigma_1 = \{ x_1 \rightarrow e_1 \} \)
 - After \(x_2 := e_2 \), \(\Sigma_2 = \{x_1 \rightarrow e_1, \ x_2 \rightarrow e_2[e_1/x_1]\} \)
 - Note that we have applied \(\Sigma_1 \) as a substitution to right-hand side of assignment \(x_2 := e_2 \)
Simple Assembly Language

- Consider the language of instructions:
 \[I ::= \quad x := e \quad | \quad f() \quad | \quad \text{if } e \text{ goto } L \quad | \quad \text{goto } L \quad | \quad L: \quad | \quad \text{return} \quad | \quad \text{inv } e \]

- The “\text{inv } e” instruction is an annotation
 - Says that boolean expression \(e \) is true at that point

- Each function \(f() \) comes with \(\text{Pre}_f \) and \(\text{Post}_f \) annotations (\text{pre-} and \text{post-conditions})

- New Notation (yay!): \(I_k \) is the instruction at address \(k \)
Symex States

• We set up a symbolic execution state:
 \[\Sigma : \text{Var} \rightarrow \text{SymbolicExpressions} \]
 \[\Sigma(x) = \text{the symbolic value of } x \text{ in state } \Sigma \]
 \[\Sigma[x:=e] = \text{a new state in which } x \text{'s value is } e \]

• We use states as substitutions:
 \[\Sigma(e) \text{- obtained from } e \text{ by replacing } x \text{ with } \Sigma(x) \]

• Much like the opsem so far ...
Symex Invariants

- The symbolic executor tracks invariants passed
- A new part of symex state: \(\text{Inv} \subseteq \{1...n\} \)
- If \(k \in \text{Inv} \) then \(I_k \) is an invariant instruction that we have already executed
- Basic idea: execute an \text{inv} instruction only \textbf{twice}:
 - The \textbf{first time} it is encountered
 - Once more time around an \textbf{arbitrary} iteration
Symex Rules

- Define a VC function as an interpreter:

\[VC : \text{Address} \times \text{SymbolicState} \times \text{InvariantState} \rightarrow \text{Assertion} \]

<table>
<thead>
<tr>
<th>Condition</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>(VC(L, \Sigma, \text{Inv}))</td>
<td>(\text{if } I_k = \text{goto } L)</td>
</tr>
<tr>
<td>(e \Rightarrow VC(L, \Sigma, \text{Inv}))</td>
<td>(\text{if } I_k = \text{if e goto } L)</td>
</tr>
<tr>
<td>(\neg e \Rightarrow VC(k+1, \Sigma, \text{Inv}))</td>
<td></td>
</tr>
<tr>
<td>(VC(k+1, \Sigma[x:=\Sigma(e)], \text{Inv}))</td>
<td>(\text{if } I_k = x := e)</td>
</tr>
<tr>
<td>(\Sigma(\text{Post}_{\text{current-function}}))</td>
<td>(\text{if } I_k = \text{return})</td>
</tr>
<tr>
<td>(\Sigma(\text{Pre}_f)) \land \forall a_1..a_m.\Sigma'(\text{Post}_f) \Rightarrow)</td>
<td></td>
</tr>
<tr>
<td>(VC(k+1, \Sigma', \text{Inv}))</td>
<td>(\text{if } I_k = f())</td>
</tr>
</tbody>
</table>

(where \(y_1, ..., y_m \) are modified by \(f \))

and \(a_1, ..., a_m \) are fresh parameters

and \(\Sigma' = \Sigma[y_1 := a_1, ..., y_m := a_m] \)

Recall: \(\text{Inv} = "\text{invariants visited so far}" \)
Symex Invariants (2a)

Two cases when seeing an invariant instruction:
1. We see the invariant for the first time
 - $l_k = \text{inv } e$
 - $k \not\in \text{Inv}$ (= “not in the set of invariants we’ve seen”)
 - Let $\{y_1, \ldots, y_m\}$ = the variables that could be modified on a path from the invariant back to itself
 - Let a_1, \ldots, a_m be fresh new symbolic parameters

$$VC(k, \Sigma, \text{Inv}) =$$

$$\Sigma(e) \land \forall a_1 \ldots a_m. \Sigma'(e) \Rightarrow VC(k+1, \Sigma', \text{Inv} \cup \{k\})$$

with $\Sigma' = \Sigma[y_1 := a_1, \ldots, y_m := a_m]$

(like a function call)
Symex Invariants (2b)

- We see the invariant for the second time
 - \(I_k = \text{inv } E \)
 - \(k \in \text{Inv} \)
 \[
 \text{VC}(k, \Sigma, \text{Inv}) = \Sigma(e)
 \]
 (like a function return)

- Some tools take a more simplistic approach
 - Do not require invariants
 - Iterate through the loop a fixed number of times
 - PREfix, versions of ESC (DEC/Compaq/HP SRC)
 - Sacrifice completeness for usability
Symex Summary

- Let x_1, \ldots, x_n be all the variables and a_1, \ldots, a_n fresh parameters
- Let Σ_0 be the state $[x_1 := a_1, \ldots, x_n := a_n]$
- Let \emptyset be the empty Inv set

• For all functions f in your program, prove:
 \[
 \forall a_1 \ldots a_n. \Sigma_0(\text{Pre}_f) \Rightarrow \text{VC}(f_{\text{entry}}, \Sigma_0, \emptyset)
 \]

• If you start the program by invoking any f in a state that satisfies Pre_f, then the program will execute such that
 - At all “inv e” the e holds, and
 - If the function returns then Post_f holds

• Can be proved w.r.t. a real interpreter (operational semantics)
• Or via a proof technique called co-induction (or, \text{assume-guarantee})
Forward VCGen Example

• Consider the program

 Precondition: \(x \leq 0 \)

 Loop: \(\text{inv } x \leq 6 \)

 if \(x > 5 \) goto End

 \(x := x + 1 \)

 goto Loop

 End: return \(\text{Postcondition: } x = 6 \)
Forward VCGen Example (2)

∀x.
 \(x \leq 0 \Rightarrow \)
 \(x \leq 6 \land \)
 \(\forall x'. \)
 \((x' \leq 6 \Rightarrow \)
 \(x' > 5 \Rightarrow x' = 6 \land \)
 \(x' \leq 5 \Rightarrow x' + 1 \leq 6 \))

• VC contains both proof obligations and assumptions about the control flow
VCs Can Be Large

• Consider the sequence of conditionals
 \[(\text{if } x < 0 \text{ then } x := -x); (\text{if } x \leq 3 \text{ then } x += 3)\]
 - With the postcondition \(P(x)\)

• The VC is
 \[
 x < 0 \land -x \leq 3 \implies P(-x + 3) \land \\
 x < 0 \land -x > 3 \implies P(-x) \land \\
 x \geq 0 \land x \leq 3 \implies P(x + 3) \land \\
 x \geq 0 \land x > 3 \implies P(x)
 \]

• There is one conjunct for each path
 \(\Rightarrow\) exponential number of paths!
 - Conjuncts for infeasible paths have un-satisfiable guards!

• Try with \(P(x) = x \geq 3\)
Van and Hitomi walked an inaudible distance from those guy's Van was hanging out with.

However, when he got into his chamber and sat down with a blank canvas propped up on its easel, his vision vanished as if it were nothing but a floating dust moat.

"Good evening my league." He picked her up by the wrist. "I think that you and I have some talking to do, actually I have a preposition"
Computer Science

- This American Turing award winner is known for the “law” that “Adding humans to a late software project makes it later.” The Turing Award citation notes landmark contributions to operating systems, software engineering and computer architecture. Notable works include *No Silver Bullet: Essence and Accidents of Software Engineering* and *The ___ ___ ___._
Q: Theatre (019 / 842)

• Name the composer or the title of the 1937 musical that includes the lyrics: "O Fortuna, velut luna statu variabilis, semper crescis aut decrescis; vita detestabilis nunc obdurat et tunc curat ludo mentis aciem, egestatem, potestatem dissolvit ut glaciem."
VCs Can Be Exponential

- VCs are **exponential** in the size of the source because they attempt relative completeness:
 - Perhaps the correctness of the program must be argued independently for each path
- Unlikely that the programmer wrote a program by considering an exponential number of cases
 - But possible. Any examples? Any solutions?
VCs Can Be Exponential

• VCs are exponential in the size of the source because they attempt relative completeness:
 - Perhaps the correctness of the program must be argued independently for each path

• Standard Solutions:
 - Allow invariants even in straight-line code
 - And thus do not consider all paths independently!
Invariants in Straight-Line Code

• Purpose: modularize the verification task

• Add the command “after c establish Inv”
 - Same semantics as c (Inv is only for VC purposes)

\[
\text{VC(after c establish Inv, P) = def VC(c,Inv) } \land \forall x_i. \text{ Inv } \Rightarrow P
\]

 • where \(x_i \) are the ModifiedVars(c)

• Use when \(c \) contains many paths

 after if \(x < 0 \) then \(x := -x \) establish \(x \geq 0 \);
 if \(x \leq 3 \) then \(x += 3 \) \{ P(x) \}

• VC is now:

\[
(x < 0 \Rightarrow -x \geq 0) \land (x \geq 0 \Rightarrow x \geq 0) \land \\
\forall x. x \geq 0 \Rightarrow (x \leq 3 \Rightarrow P(x+3) \land x > 3 \Rightarrow P(x))
\]
Dropping Paths

In absence of annotations, we can drop some paths

\[VC(\text{if } E \text{ then } c_1 \text{ else } c_2, P) = \text{choose one of} \]

1. \[E \Rightarrow VC(c_1, P) \land \neg E \Rightarrow VC(c_2, P) \] (drop no paths)
2. \[E \Rightarrow VC(c_1, P) \quad \neg E \Rightarrow VC(c_2, P) \] (drops “else” path!)

We sacrifice soundness! (we are now \textit{unsound})

- No more guarantees
- Possibly still a good debugging aid

Remarks:

- A recent trend is to sacrifice soundness to increase usability (e.g., Metal, ESP, even ESC)
- The PREfix tool considers only 50 non-cyclic paths through a function (almost at random)
VCGen for Exceptions

- We extend the source language with exceptions without arguments (cf. HW2):
 - throw throws an exception
 - try c_1 catch c_2 executes c_2 if c_1 throws

- Problem:
 - We have non-local transfer of control
 - What is $VC(\text{throw}, P)$?
VCGen for Exceptions

• We extend the source language with exceptions without arguments (cf. HW2):
 - `throw` throws an exception
 - `try c_1 catch c_2` executes c_2 if c_1 throws

• Problem:
 - We have non-local transfer of control
 - What is $VC(\text{throw}, P)$?

• Standard Solution: use 2 postconditions
 - One for normal termination
 - One for exceptional termination
VCGen for Exceptions (2)

- **VC(c, P, Q)** is a precondition that makes `c` either not terminate, or terminate normally with `P` or throw an exception with `Q`

- Rules

\[
\begin{align*}
\text{VC}(\text{skip}, P, Q) & = P \\
\text{VC}(c_1; c_2, P, Q) & = \text{VC}(c_1, \text{VC}(c_2, P, Q), Q) \\
\text{VC}(\text{throw}, P, Q) & = Q \\
\text{VC}(\text{try } c_1 \text{ catch } c_2, P, Q) & = \text{VC}(c_1, P, \text{VC}(c_2, P, Q)) \\
\text{VC}(\text{try } c_1 \text{ finally } c_2, P, Q) & = ?
\end{align*}
\]
VCGen Finally

• Given these:

\[VC(c_1; c_2, P, Q) = VC(c_1, VC(c_2, P, Q), Q) \]
\[VC(\text{try } c_1 \text{ catch } c_2, P, Q) = VC(c_1, P, VC(c_2, P, Q)) \]

• Finally is somewhat like “if”:

\[VC(\text{try } c_1 \text{ finally } c_2, P, Q) = \]
\[VC(c_1, VC(c_2, P, Q), \text{true}) \land VC(c_1, \text{true}, VC(c_2, Q, Q)) \]

• Which reduces to:

\[VC(c_1, VC(c_2, P, Q), VC(c_2, Q, Q)) \]
Hoare Rules and the Heap

• When is the following Hoare triple valid?
 \{ A \} *x := 5 \{ *x + *y = 10 \}

• A should be “*y = 5 or x = y”

• The Hoare rule for assignment would give us:
 - \([5/*x](*x + *y = 10) = 5 + *y = 10 = \]
 - *y = 5 (we lost one case)

• Why didn’t this work?
Handling The Heap

• We do not yet have a way to talk about memory (the heap, pointers) in assertions

• Model the state of memory as a symbolic mapping from addresses to values:
 - If A denotes an address and M is a memory state then:
 - $\text{sel}(M,A)$ denotes the contents of the memory cell
 - $\text{upd}(M,A,V)$ denotes a new memory state obtained from M by writing V at address A
More on Memory

• We allow variables to range over memory states
 - We can quantify over all possible memory states
• Use the special pseudo-variable μ (mu) in assertions to refer to the current memory
• Example:

$$\forall i. \ i \geq 0 \land i < 5 \implies \text{sel}(\mu, A + i) > 0$$

says that entries 0..4 in array A are positive
Hoare Rules: Side-Effects

• To model writes we use memory expressions
 - A memory write changes the value of memory

\[
\{ B[\text{upd}(\mu, A, E)/\mu] \} \ast A := E \{ B \}
\]

• Important technique: treat memory as a whole
• And reason later about memory expressions with inference rules such as (McCarthy Axioms, ~‘67):

\[
sel(\text{upd}(M, A_1, V), A_2) = \begin{cases}
 V & \text{if } A_1 = A_2 \\
 sel(M, A_2) & \text{if } A_1 \neq A_2
\end{cases}
\]
Memory Aliasing

• Consider again: \{A\} \{ x := 5 \} \{ x + y = 10 \}
• We obtain:

\[A = \left[\text{upd}(\mu, x, 5)/\mu \right] (x + y = 10) \]
\[= \left[\text{upd}(\mu, x, 5)/\mu \right] (\text{sel}(\mu, x) + \text{sel}(\mu, y) = 10) \]
(1) \[= \text{sel}(\text{upd}(\mu, x, 5), x) + \text{sel}(\text{upd}(\mu, x, 5), y) = 10 \]
\[= 5 + \text{sel}(\text{upd}(\mu, x, 5), y) = 10 \]
\[= \text{if } x = y \text{ then } 5 + 5 = 10 \text{ else } 5 + \text{sel}(\mu, y) = 10 \]
(2) \[= x = y \text{ or } *y = 5 \]
• Up to (1) is theorem generation
• From (1) to (2) is theorem proving
Alternative Handling for Memory

• Reasoning about aliasing can be expensive
 - It is \(\text{NP-hard (and/or undecideable)}\)

• Sometimes completeness is sacrificed with the following (approximate) rule:

\[
\operatorname{sel}(\operatorname{upd}(M, A_1, V), A_2) = \begin{cases}
V & \text{if } A_1 = \text{(obviously) } A_2 \\
\operatorname{sel}(M, A_2) & \text{if } A_1 \neq \text{(obviously) } A_2 \\
P & \text{otherwise (p is a fresh new parameter)}
\end{cases}
\]

• The meaning of “obviously” varies:
 • The addresses of two distinct globals are \(\neq\)
 • The address of a global and one of a local are \(\neq\)
 • PREfix and GCC use such schemes
VCGen Overarching Example

Consider the program

- Precondition: $B : \text{bool} \land A : \text{array(bool, L)}$

1: $I := 0$
 $R := B$
3: $\text{inv } I \geq 0 \land R : \text{bool}$
 if $I \geq L$ goto 9
 $\text{assert saferd}(A + I)$
 $T := *(A + I)$
 $I := I + 1$
 $R := T$
 goto 3
9: return R

- Postcondition: $R : \text{bool}$
VCGen Overarching Example

\[\forall A. \forall B. \forall L. \forall \mu \]
\[B : \text{bool} \land A : \text{array}(\text{bool}, L) \Rightarrow\]
\[0 \geq 0 \land B : \text{bool} \land\]
\[\forall I. \forall R.\]
\[I \geq 0 \land R : \text{bool} \Rightarrow\]
\[I \geq L \Rightarrow R : \text{bool}\]
\[\land\]
\[I < L \Rightarrow \text{saferd}(A + I) \land\]
\[I + 1 \geq 0 \land\]
\[\text{sel}(\mu, A + I) : \text{bool}\]

• VC contains both proof obligations and assumptions about the control flow
Mutable Records - Two Models

• Let \(r : \) RECORD \{ f1 : T1; f2 : T2 \} END

• For us, records are reference types

• Method 1: one “memory” for each record
 - One index constant for each field
 - \(r.f1 \) is sel(r,f1) and \(r.f1 := E \) is \(r := upd(r,f1,E) \)

• Method 2: one “memory” for each field
 - The record address is the index
 - \(r.f1 \) is sel(f1,r) and \(r.f1 := E \) is \(f1 := upd(f1,r,E) \)

• Only works in strongly-typed languages like Java
 - Fails in C where \&r.f2 = \&r + sizeof(T1)
VC as a “Semantic Checksum”

• Weakest preconditions are an expression of the program’s semantics:
 - Two equivalent programs have logically equivalent WPs
 - No matter how different their syntax is!

• VC are almost as powerful
VC as a “Semantic Checksum” (2)

• Consider the “assembly language” program to the right

\[
\begin{align*}
x & := 4 \\
x & := (x == 5) \\
& \quad \text{assert } x : \text{bool} \\
x & := \text{not } x \\
& \quad \text{assert } x
\end{align*}
\]

• High-level type checking is not appropriate here
• The VC is: \(((4 == 5) : \text{bool}) \land (\text{not (4 == 5)))\)
• No confusion from reuse of \(x\) with different types
Invariance of VC Across Optimizations

- VC is so good at abstracting syntactic details that it is *syntactically preserved* by many common optimizations
 - Register allocation, instruction scheduling
 - Common subexp elim, constant and copy propagation
 - Dead code elimination
- We have *identical* VCs whether or not an optimization has been performed
 - Preserves syntactic form, not just semantic meaning!
- This can be used to verify correctness of compiler optimizations (Translation Validation)
VC Characterize a Safe Interpreter

- Consider a fictitious “safe” interpreter
 - As it goes along it performs checks (e.g. “safe to read from this memory addr”, “this is a null-terminated string”, “I have not already acquired this lock”)
 - Some of these would actually be hard to implement

- The VC describes all of the checks to be performed
 - Along with their context (assumptions from conditionals)
 - Invariants and pre/postconditions are used to obtain a finite expression (through induction)

- VC is valid \(\Rightarrow \) interpreter never fails
 - We enforce same level of “correctness”
 - But better (static + more powerful checks)
VC Big Picture

• Verification conditions
 - Capture the semantics of code + specifications
 - Language independent
 - Can be computed backward/forward on structured/unstructured code
 - Make Axiomatic Semantics practical
Invariants Are Not Easy

• Consider the following code from QuickSort

```c
int partition(int *a, int L_0, int H_0, int pivot) {
    int L = L_0, H = H_0;
    while(L < H) {
        while(a[L] < pivot) L ++;
        while(a[H] > pivot) H --;
        if(L < H) { swap a[L] and a[H] }
    }
    return L
}
```

• Consider verifying only memory safety
• What is the loop invariant for the outer loop ?
Done!

• Questions?