Abstract Interpretation (Non-Standard Semantics)

a.k.a.

“Picking The Right Abstraction”
Reading Quiz

• All answers are one to three words.
• Write your UVA ID in big block letters.
• In *Reflections on Trusting Trust*, Ken Thompson describes a trojan horse in what general piece of software?
• In Abramski's *Abstract Interpretation*, an “immediate and spectacular payoff” is the Theorem that if \(f: D \to D \) is continuous, it has a _____ _____ _____ \(d \) in \(D \), such that:
 - \(f(d) = d \)
 - \(\forall e \in E. f(e) = e \Rightarrow d \leq e \)
Why analyze programs statically?
The Problem

- It is extremely useful to predict program behavior \textit{statically} (= without running the program)
 - For optimizing compilers, program analyses, software engineering tools, finding security flaws, etc.
- The semantics we studied so far give us the precise behavior of a program
- However, precise static predictions are impossible
 - The exact semantics is \textit{not computable}
- We must settle for \textit{approximate}, but correct, static analyses (e.g. VC vs. WP)
The Plan

• We will introduce **abstract interpretation** by example
• Starting with a miniscule language we will build up to a fairly realistic application
• Along the way we will see most of the ideas and difficulties that arise in a big class of applications
A Tiny Language

• Consider the following language of arithmetic ("shrIMP")?

\[e ::= n \mid e_1 \ast e_2 \]

• The operational semantics of this language

\[n \downarrow = n \]
\[e_1 \ast e_2 \downarrow = e_1 \downarrow \times e_2 \downarrow \]

• We’ll take opsem as the “ground truth”

• For this language the precise semantics is computable (but in general it’s not)
An Abstraction

• Assume that we are interested not in the value of the expression, but only in its sign:
 - positive (+), negative (-), or zero (0)
• We can define an abstract semantics that computes only the sign of the result
 \[\sigma : \text{Exp} \rightarrow \{-, 0, +\} \]

\[\sigma(n) = \text{sign}(n) \]
\[\sigma(e_1 \ast e_2) = \sigma(e_1) \otimes \sigma(e_2) \]
I Saw the Sign

• Why did we want to compute the sign of an expression?
 - One reason: **no one will believe you** know abstract interpretation if you haven’t seen the sign example :-)

• What could we be computing instead?
Correctness of Sign Abstraction

• We can show that the abstraction is correct in the sense that it predicts the sign
 \[e \uparrow > 0 \iff \sigma(e) = + \]
 \[e \uparrow = 0 \iff \sigma(e) = 0 \]
 \[e \uparrow < 0 \iff \sigma(e) = - \]
Correctness of Sign Abstraction

- We can show that the abstraction is correct in the sense that it predicts the sign
 \[e \Downarrow > 0 \iff \sigma(e) = + \]
 \[e \Downarrow = 0 \iff \sigma(e) = 0 \]
 \[e \Downarrow < 0 \iff \sigma(e) = - \]

- Our semantics is abstract but precise
- Proof is by structural induction on the expression \(e \)
 - Each case repeats similar reasoning
Another View of Soundness

• Link each concrete value to an abstract one:
 \[\beta : \mathbb{Z} \rightarrow \{ -, 0, + \} \]

• This is called the abstraction function \((\beta)\)
 - This three-element set is the abstract domain

• Also define the concretization function \((\gamma)\):
 \[\gamma : \{-, 0, +\} \rightarrow \mathcal{P}(\mathbb{Z}) \]
 \[\gamma(+) = \{ n \in \mathbb{Z} \mid n > 0 \} \]
 \[\gamma(0) = \{ 0 \} \]
 \[\gamma(-) = \{ n \in \mathbb{Z} \mid n < 0 \} \]
Another View of Soundness 2

• Soundness can be stated succinctly

\[\forall e \in \text{Exp. } e \downarrow \in \gamma(\sigma(e)) \]

(the real value of the expression is among the concrete values represented by the abstract value of the expression)

• Let C be the **concrete domain** (e.g. \(\mathbb{Z} \)) and A be the **abstract domain** (e.g. \{-, 0, +\})

• **Commutative diagram:**

\[
\begin{array}{ccc}
\text{Exp} & \xrightarrow{\sigma} & A \\
\downarrow & & \downarrow \\
C & \xrightarrow{\in} & \mathcal{P}(C)
\end{array}
\]
Another View of Soundness 3

- Consider the generic abstraction of an operator
 \[\sigma(e_1 \text{ op } e_2) = \sigma(e_1) \text{ op } \sigma(e_2) \]

- This is sound iff
 \[\forall a_1 \forall a_2. \gamma(a_1 \text{ op } a_2) \supseteq \{ n_1 \text{ op } n_2 | n_1 \in \gamma(a_1), n_2 \in \gamma(a_2) \} \]

- e.g. \[\gamma(a_1 \otimes a_2) \supseteq \{ n_1 \ast n_2 | n_1 \in \gamma(a_1), n_2 \in \gamma(a_2) \} \]

- This reduces the proof of correctness to one proof for each operator
Abstract Interpretation

- This is our first example of an *abstract interpretation*
- We carry out computation in an *abstract domain*
- The abstract semantics is a *sound approximation* of the standard semantics
- The *concretization* and *abstraction* functions establish the connection between the two domains
Adding Unary Minus and Addition

• We extend the language to

 \[e ::= n \mid e_1 \ast e_2 \mid - e \]

• We define \(\sigma(-e) = \ominus \sigma(e) \)

• Now we add addition:

 \[e ::= n \mid e_1 \ast e_2 \mid - e \mid e_1 + e_2 \]

• We define \(\sigma(e_1 + e_2) = \sigma(e_1) \oplus \sigma(e_2) \)
Adding Addition

• The sign values are **not closed** under addition
• What should be the value of “+ ⊕ -”?
• Start from the soundness condition:

\[\gamma(+ \oplus -) \supseteq \{ n_1 + n_2 \mid n_1 > 0, n_2 < 0 \} = \mathbb{Z} \]

• We don’t have an abstract value whose concretization includes \(\mathbb{Z} \), so we add one:

\[
\begin{array}{c|cccc}
\oplus & - & 0 & + & \top \\
- & - & - & \top & \top \\
0 & - & 0 & + & \top \\
+ & \top & + & + & \top \\
\top & \top & \top & \top & \top \\
\end{array}
\]

\(\top \) (“top” = “don’t know”)
Loss of Precision

- Abstract computation may lose information:

 \[[(1 + 2) + (-3)] = 0 \]

 but:

 \[\sigma((1+2) + (-3)) = \]

 \[(\sigma(1) \oplus \sigma(2)) \oplus \sigma(-3) = \]

 \[(+ \oplus +) \oplus - = \top \]

- We lost some precision

- But this will simplify the computation of the abstract answer in cases when the precise answer is not computable
Adding Division

• Straightforward except for division by 0
 - We say that there is no answer in that case
 - \(\gamma(+ \otimes 0) = \{ n \mid n = n_1 / 0 , n_1 > 0 \} = \emptyset \)

• Introduce \(\perp \) to be the abstraction of the \(\emptyset \)
 - We also use the same abstraction for non-termination!
 - \(\perp = \text{“nothing”} \)
 - \(T = \text{“something unknown”} \)
• This 1962 Newbery Medal-winning novel by Madeleine L'Engle includes Charles Wallace, Mrs. Who, Mrs. Whatsit, Mrs. Which and the space-bending Tesseract.
Computer Science

- This American Turing-award winner is known for developing Speedcoding and FORTRAN (the first two high-level languages), as well creating a way to express the formal syntax of a language and using that approach to specify ALGOL. He later focused on function-level (as opposed to value-level) programming. His first major programming project calculated the positions of the Moon. Oh, and he studied at UVA as an undergrad (but quit).
The Abstract Domain

• Our abstract domain forms a **lattice**
• A partial order is induced by γ
 \[a_1 \leq a_2 \text{ iff } \gamma(a_1) \subseteq \gamma(a_2) \]
 - We say that a_1 is **more precise** than a_2!
• Every **finite subset** has a least-upper bound (lub) and a greatest-lower bound (glb)
Lattice Facts

• A lattice is **complete** when every subset has a lub and a gub
 - Even infinite subsets!
• Every finite lattice is (trivially) complete
• Every complete lattice is a **complete partial order** (recall: proof techniques: induction!)
 - Since a chain is a subset
• Not every CPO is a complete lattice
 - Might not even be a lattice at all
Lattice History

- Early work in denotational semantics used lattices (instead of what?)
 - But only chains need to have lubs
 - And there was no need for \top and glb
Lattice History

• **Early work** in denotational semantics used lattices (instead of what?)
 - But only chains need to have lubs
 - And there was no need for \top and glb

• In abstract interpretation we’ll use \top to denote “I don’t know”.
 - Corresponds to all values in the concrete domain
From One, Many

• We can start with the **abstraction function** β

$$\beta : C \rightarrow A$$

(map a concrete value to the best abstract value)
- A must be a lattice

• We can derive the **concretization function** γ

$$\gamma : A \rightarrow \mathcal{P}(C)$$

$$\gamma(a) = \{ x \in C \mid \beta(x) \leq a \}$$

• And the **abstraction for sets** α

$$\alpha : \mathcal{P}(C) \rightarrow A$$

$$\alpha(S) = \text{lub} \{ \beta(x) \mid x \in S \}$$
Example

• Consider our sign lattice

\[\beta(n) = \begin{cases}
+ & \text{if } n > 0 \\
0 & \text{if } n = 0 \\
- & \text{if } n < 0
\end{cases}\]

• \(\alpha(S) = \operatorname{lub}\ \{\ \beta(x) \mid x \in S\}\)
 - Example: \(\alpha(\{1, 2\}) = \operatorname{lub}\ \{+\} = +\)
 \(\alpha(\{1, 0\}) = \operatorname{lub}\ \{+, 0\} = \top\)
 \(\alpha(\{\}) = \operatorname{lub}\ \emptyset = \bot\)

• \(\gamma(a) = \{n \mid \beta(n) \leq a\}\)
 - Example: \(\gamma(+)=\{n \mid \beta(n) \leq +\} = \{n \mid \beta(n) = +\} = \{n \mid n > 0\}\)
 \(\gamma(\top)=\{n \mid \beta(n) \leq \top\} = \mathbb{Z}\)
 \(\gamma(\bot)=\{n \mid \beta(n) \leq \bot\} = \emptyset\)
Galois Connections

• We can show that
 - \(\gamma \) and \(\alpha \) are monotonic (with \(\subseteq \) ordering on \(\mathcal{P}(C) \))
 - \(\alpha (\gamma (a)) = a \) for all \(a \in A \)
 - \(\gamma (\alpha (S)) \supseteq S \) for all \(S \in \mathcal{P}(C) \)

• Such a pair of functions is called a **Galois connection**
 - Between the lattices \(A \) and \(\mathcal{P}(C) \)
Correctness Condition

- In general, abstract interpretation satisfies the following (amazingly common) diagram:

\[\text{Exp} \xrightarrow{\downarrow} C \xrightarrow{\in} \mathcal{P}(C) \]

\[\text{A} \xrightarrow{\gamma} \text{abstract domain} \]

\[\sigma \xrightarrow{\text{abstract semantics}} \]

\[\alpha (\leq) \xrightarrow{\text{abstraction function for sets}} \]

\[\text{concretization function} \]

\[\text{means} \]

\[\text{concrete domain} \]
Three Little Correctness Conditions

• Three conditions define a correct abstract interpretation
 • α and γ are monotonic
 • α and γ form a Galois connection

 = “α and γ are almost inverses”

1. Abstraction of operations is correct

$$a_1 \text{ op } a_2 = \alpha(\gamma(a_1) \text{ op } \gamma(a_2))$$
On The Board Questions

• What is the VC for:

\[
\text{for } i = e_{\text{low}} \text{ to } e_{\text{high}} \text{ do } c \text{ done}
\]

• This axiomatic rule is unsound. Why?

\[
\vdash \{A \land p\} \ c_{\text{then}} \ \{B_{\text{then}}\} \quad \vdash \{A \land \neg p\} \ c_{\text{else}} \ \{B_{\text{else}}\}
\]

\[
\vdash \{A\} \text{ if } p \text{ then } c_{\text{then}} \ \text{else } c_{\text{else}} \ \{B_{\text{then}} \lor B_{\text{else}}\}
\]
Homework

- Read Cousot & Cousot Article