Abstract Interpretation

(Galois, Collections, Widening)
Tool Time

- Homework 5 Reminder
- You've already started ...
- Compilation problems?
 - See FAQ
(trivia: what tool brand is this?)
One Slide Summary

• In abstract interpretation, the abstraction function β and concretization function γ form a Galois connection: they are almost inverses.

• To abstract the state σ at each program point we use a collecting semantics (the abstract domain holds sets of states). This shows the link between abstract interpretation and model checking.

• This will result in recursively-defined equations. We use the fixed point theorem to solve them. This shows the link between abstract interpretation and dataflow analysis.

• Widening operators help accelerate convergence.
Abstract Interpretation

- We have an abstract domain A
 - e.g., $A = \{ \text{positive, negative, zero} \}$
 - An abstraction function $\beta : \mathbb{Z} \rightarrow A$
 - \mathbb{Z} is our concrete domain
 - A concretization function $\gamma : A \rightarrow \mathcal{P}(\mathbb{Z})$

- Positive + Positive = ???
- Positive + Negative = ???
- Positive / Zero = ???
We don't want security to get suspicious ...
crazy delicious
Review

- We introduced **abstract interpretation**
- An abstraction mapping from concrete to abstract values
 - Has a concretization mapping which forms a Galois connection

- We’ll look a bit more at Galois connections
- We’ll lift AI from expressions to programs
- ... and we’ll discuss the mythic “widening”
Why Galois Connections?

• We have an abstract domain A
 - An abstraction function $\beta : \mathbb{Z} \to A$
 - Induces $\alpha : \mathcal{P}(\mathbb{Z}) \to A$ and $\gamma : A \to \mathcal{P}(\mathbb{Z})$

• We argued that for correctness
 $$\gamma(a_1 \text{ op } a_2) \supseteq \gamma(a_1) \text{ op } \gamma(a_2)$$
 - We wish for the set on the left to be as small as possible
 - To reduce the loss of information through abstraction

• For each set $S \subseteq C$, define $\alpha(S)$ as follows:
 - Pick smallest S' that includes S and is in the image of γ
 - Define $\alpha(S) = \gamma^{-1}(S')$
 - Then we define: $a_1 \text{ op } a_2 = \alpha(\gamma(a_1) \text{ op } \gamma(a_2))$

• Then α and γ form a Galois connection
Galois Connections

- A **Galois connection** between complete lattices \(A \) and \(\mathcal{P}(C) \) is a pair of functions \(\alpha \) and \(\gamma \) such that:
 - \(\gamma \) and \(\alpha \) are monotonic
 - (with the \(\subseteq \) ordering on \(\mathcal{P}(C) \))
 - \(\alpha (\gamma (a)) = a \) for all \(a \in A \)
 - \(\gamma (\alpha (S)) \supseteq S \) for all \(S \in \mathcal{P}(C) \)
More on Galois Connections

- All Galois connections are monotonic.
- In a Galois connection one function uniquely and absolutely determines the other.
Abstract Interpretation for Imperative Programs

• So far we abstracted the value of expressions

• Now we want to abstract the state at each point in the program

• First we define the concrete semantics that we are abstracting
 - We’ll use a collecting semantics
Collecting Semantics

- Recall
 - A state $\sigma \in \Sigma$. Any state σ has type $\text{Var} \rightarrow \mathbb{Z}$
 - States vary from program point to program point

- We introduce a set of program points: labels

- We want to answer questions like:
 - Is x always positive at label i?
 - Is x always greater or equal to y at label j?

- To answer these questions we’ll construct
 $C \in \text{Contexts}$. C has type $\text{Labels} \rightarrow \mathcal{P}(\Sigma)$
 - For each label i, $C(i) = \text{all possible states at label } i$
 - This is called the collecting semantics of the program
 - This is basically what SLAM (and BLAST, ESP, ...) approximate (using BDDs to store $\mathcal{P}(\Sigma)$ efficiently)
Defining the Collecting Semantics

- We first define relations between the collecting semantics at different labels
 - We do it for unstructured CFGs (cf. HW5!)
 - Can do it for IMP with careful notion of program points
- Define a label on each edge in the CFG
- For assignment

\[
C_j = \{ \sigma[x := n] \mid \sigma \in C_i \land e \downarrow_\sigma = n \}
\]
Defining the Collecting Semantics

- For conditionals

\[
\begin{align*}
C_{\text{else}} &= \{ \sigma \mid \sigma \in C_{\text{in}} \land b \downarrow \sigma = \text{false} \} \\
C_{\text{then}} &= \{ \sigma \mid \sigma \in C_{\text{in}} \land b \downarrow \sigma = \text{true} \}
\end{align*}
\]

- Assumes b has no side effects (as in IMP or HW5)
Defining the Collecting Semantics

- For a join

\[\text{i} \quad \downarrow \quad \text{out} \quad \text{j} \]
Defining the Collecting Semantics

• For a join

\[C_{out} = C_i \cup C_j \]

• Verify that these relations are monotonic
 - If we increase a \(C_x \) all other \(C_y \) can only increase
Collecting Semantics: Example

- Assume $x \geq 0$ initially (explain this?)

$$C_1 = \{ \sigma \mid \sigma(x) \geq 0 \}$$
Collecting Semantics: Example

- Assume $x \geq 0$ initially

$C_1 = \{ \sigma \mid \sigma(x) \geq 0 \}$

$C_2 = \{ \sigma[y:=1] \mid \sigma \in C_1 \}$
Collecting Semantics: Example

• Assume $x \geq 0$ initially

$y := 1$

$\sigma(x) \geq 0$

$C_1 = \{\sigma \mid \sigma(x) \geq 0\}$

$C_2 = \{\sigma[y:=1] \mid \sigma \in C_1\}$

$C_3 = C_2 \cap \{\sigma \mid \sigma(x) \neq 0\}$

$y := y \ast x$

$x := x - 1$
Collecting Semantics: Example

- Assume \(x \geq 0 \) initially

\[C_1 = \{ \sigma \mid \sigma(x) \geq 0 \} \]
\[C_2 = \{ \sigma[y:=1] \mid \sigma \in C_1 \} \]
\[C_3 = C_2 \cap \{ \sigma \mid \sigma(x) \neq 0 \} \]
\[C_4 = \{ \sigma[y:=\sigma(y) \ast \sigma(x)] \mid \sigma \in C_3 \} \]
Collecting Semantics: Example

- Assume $x \geq 0$ initially

\[
\begin{align*}
C_1 & = \{ \sigma \mid \sigma(x) \geq 0 \} \\
C_2 & = \{ \sigma[y:=1] \mid \sigma \in C_1 \} \\
& \cup \{ \sigma[x:=\sigma(x)-1] \mid \sigma \in C_4 \} \\
C_3 & = C_2 \cap \{ \sigma \mid \sigma(x) \neq 0 \} \\
C_4 & = \{ \sigma[y:=\sigma(y) * \sigma(x)] \mid \\
& \quad \sigma \in C_3 \}
\end{align*}
\]
Collecting Semantics: Example

- Assume $x \geq 0$ initially

\[\begin{align*}
C_1 &= \{\sigma \mid \sigma(x) \geq 0\} \\
C_2 &= \{\sigma[y:=1] \mid \sigma \in C_1\} \\
&\cup \{\sigma[x:=\sigma(x) - 1] \mid \sigma \in C_4\} \\
C_3 &= C_2 \cap \{\sigma \mid \sigma(x) \neq 0\} \\
C_4 &= \{\sigma[y:=\sigma(y)\times\sigma(x)] \mid \sigma \in C_3\} \\
C_5 &= C_2 \cap \{\sigma \mid \sigma(x) = 0\}
\end{align*}\]
Why Does This Work?

- We just made a system of recursive equations that are defined largely in terms of themselves
 - e.g., $C_2 = F(C_4)$, $C_4 = G(C_3)$, $C_3 = H(C_2)$
- Why do we have any reason to believe that this will get us what we want?
The Collecting Semantics

- We have an equation with the unknown C
 - The equation is defined by a *monotonic* and *continuous* function on domain $\text{Labels} \to \mathcal{P}(\Sigma)$
- We can use the *least fixed-point theorem*
 - Start with $C^0(L) = \emptyset$ (aka $C^0 = \lambda L.\emptyset$)
 - Apply the relations between C_i and C_j to get C^1_i from C^0_j
 - Stop when all $C^k = C^{k-1}$
- Problem: *we’ll go on forever for most programs*
- But we know the fixed point exists
Collecting Semantics: Example

- (assume $x \geq 0$ initially)

\[y := 1 \]

\[x := x - 1 \]

\[y := y \times x \]

\[x := x - 1 \]

\[T \]

\[C_1 = \{ \sigma \mid \sigma(x) \geq 0 \} \]

\[C_2 = \{ \sigma[y:=1] \mid \sigma \in C_1 \} \]

\[\cup \{ \sigma[x:=\sigma(x)-1] \mid \sigma \in C_4 \} \]

\[C_3 = C_2 \cap \{ \sigma \mid \sigma(x) \neq 0 \} \]

\[C_5 = C_2 \cap \{ \sigma \mid \sigma(x) = 0 \} \]

\[C_4 = \{ \sigma[y:=\sigma(y)\times\sigma(x)] \mid \sigma \in C_3 \} \]
Collecting Semantics: Example

• (assume $x \geq 0$ initially)

$\begin{align*}
C_1 &= \{ \sigma \mid \sigma(x) \geq 0 \} \\
C_2 &= \{ \sigma[y:=1] \mid \sigma \in C_1 \} \\
&\quad \cup \{ \sigma[x:=\sigma(x)-1] \mid \sigma \in C_4 \} \\
C_3 &= C_2 \cap \{ \sigma \mid \sigma(x) \neq 0 \} \\
C_5 &= C_2 \cap \{ \sigma \mid \sigma(x) = 0 \} \\
C_4 &= \{ \sigma[y:=\sigma(y) \times \sigma(x)] \mid \sigma \in C_3 \}
\end{align*}$
Collecting Semantics: Example

• (assume \(x \geq 0 \) initially)

\[\begin{align*}
C_1 &= \{ \sigma \mid \sigma(x) \geq 0 \} \\
C_2 &= \{ \sigma[y:=1] \mid \sigma \in C_1 \} \\
&\quad \cup \{ \sigma[x:=\sigma(x)-1] \mid \sigma \in C_4 \} \\
C_3 &= C_2 \cap \{ \sigma \mid \sigma(x) \neq 0 \} \\
C_4 &= \{ \sigma[y:=\sigma(y)\sigma(x)] \mid \sigma \in C_3 \} \\
C_5 &= C_2 \cap \{ \sigma \mid \sigma(x) = 0 \}
\end{align*} \]
Collecting Semantics: Example

• (assume $x \geq 0$ initially)

- **$1 \{x \geq 0\}$**
- **$2 \{x \geq 0, y = 1\}$**
- **$3 \{x > 0, y = 1\}$**
- **4**
- **$5 \{x = 0, y = 1\}$**

$C_1 = \{\sigma \mid \sigma(x) \geq 0\}$

$C_2 = \{\sigma[y:=1] \mid \sigma \in C_1\}$

$C_3 = C_2 \cap \{\sigma \mid \sigma(x) \neq 0\}$

$C_4 = \{\sigma[y:=\sigma(y)\sigma(x)] \mid \sigma \in C_3\}$

$C_5 = C_2 \cap \{\sigma \mid \sigma(x) = 0\}$
Collecting Semantics: Example

• (assume $x \geq 0$ initially)

\[
\begin{align*}
\mathcal{C}_1 &= \{ \sigma \mid \sigma(x) \geq 0 \} \\
\mathcal{C}_2 &= \{ \sigma[y:=1] \mid \sigma \in \mathcal{C}_1 \} \\
&\quad \cup \{ \sigma[x:=\sigma(x)-1] \mid \sigma \in \mathcal{C}_4 \} \\
\mathcal{C}_3 &= \mathcal{C}_2 \cap \{ \sigma \mid \sigma(x) \neq 0 \} \\
\mathcal{C}_5 &= \mathcal{C}_2 \cap \{ \sigma \mid \sigma(x) = 0 \} \\
\mathcal{C}_4 &= \{ \sigma[y:=\sigma(y)\times\sigma(x)] \mid \sigma \in \mathcal{C}_3 \}
\end{align*}
\]
Collecting Semantics: Example

- (assume $x \geq 0$ initially)

$\begin{aligned}
1 & \{ x \geq 0 \} \\
2 & \{ x \geq 0, y = 1 \} \\
3 & \{ x > 0, y = 1 \} \\
4 & \{ x > 0, y = x \} \\
5 & \{ x = 0, y = 1 \}
\end{aligned}$

$\begin{aligned}
\mathcal{C}_1 &= \{ \sigma \mid \sigma(x) \geq 0 \} \\
\mathcal{C}_2 &= \{ \sigma[y:=1] \mid \sigma \in \mathcal{C}_1 \} \\
&\quad \cup \{ \sigma[x:=\sigma(x)-1] \mid \sigma \in \mathcal{C}_3 \} \\
\mathcal{C}_3 &= \mathcal{C}_2 \cap \{ \sigma \mid \sigma(x) \neq 0 \} \\
\mathcal{C}_4 &= \mathcal{C}_2 \cap \{ \sigma \mid \sigma(x) = 0 \} \\
\mathcal{C}_5 &= \{ \sigma[y:=\sigma(y)\times\sigma(x)] \mid \sigma \in \mathcal{C}_3 \}
\end{aligned}$
Collecting Semantics: Example

• (assume \(x \geq 0 \) initially)

\[
\begin{align*}
1 & \quad \{ x \geq 0 \} \\
2 & \quad \{ x \geq 0, y = 1 \lor y = x + 1 \}
\end{align*}
\]

\[
\begin{align*}
3 & \quad \{ x > 0, y = 1 \} \\
4 & \quad \{ x > 0, y = x \}
\end{align*}
\]

\[
\begin{align*}
F & \quad y := 1 \\
T & \quad x := 0
\end{align*}
\]

\[
\begin{align*}
5 & \quad \{ x = 0, y = 1 \} \\
\end{align*}
\]

\[
\begin{align*}
C_1 & = \{ \sigma \mid \sigma(x) \geq 0 \} \\
C_2 & = \left\{ \sigma[y := 1] \mid \sigma \in C_1 \right\} \\
& \quad \cup \left\{ \sigma[x := \sigma(x) - 1] \mid \sigma \in C_4 \right\} \\
C_3 & = C_2 \cap \{ \sigma \mid \sigma(x) \neq 0 \} \\
C_5 & = C_2 \cap \{ \sigma \mid \sigma(x) = 0 \} \\
C_4 & = \{ \sigma[y := \sigma(y) \times \sigma(x)] \mid \sigma \in C_3 \}
\end{align*}
\]
Computer Science

- This American Turing-award winner is known for work on the B and C programming languages, the Unix and Plan 9 operating systems, regular expressions in text editors, UTF-8, and chess endgames. Almost all programs that use regular expressions today use his notation for them.
Sanskrit Epics

- This Sanskrit epic is one of the two great canon stories of India, and is attributed to the Hindu sage Valmiki. It covers dharma and human values while explaining the protagonist's attempt to recover his wife, Sita, who has been taken by the demons of Lanka. It is heavy on allegory and philosophy. Archery, including an epic use of the brahmastra, is often involved.
Abstract Interpretation

• Pick a complete lattice A (abstractions for $\mathcal{P}(\Sigma)$)
 - Along with a monotonic abstraction $\alpha : \mathcal{P}(\Sigma) \rightarrow A$
 - Alternatively, pick $\beta : \Sigma \rightarrow A$
 - This uniquely defines its Galois connection γ

• Take the relations between C_i and move them to the abstract domain:

 $a : \text{Label} \rightarrow A$

• Assignment

 Concrete: $C_j = \{ \sigma[x := n] \mid \sigma \in C_i \land e_{\downarrow} \sigma = n \}$

 Abstract: $a_j = \alpha \{ \sigma[x := n] \mid \sigma \in \gamma(a_i) \land e_{\downarrow} \sigma = n \}$
Abstract Interpretation

• Conditional

Concrete: $C_j = \{ \sigma \mid \sigma \in C_i \land b\downarrow_\sigma = \text{false} \}$ and
$C_k = \{ \sigma \mid \sigma \in C_i \land b\downarrow_\sigma = \text{true} \}$

Abstract: $a_j = \alpha \{ \sigma \mid \sigma \in \gamma(a_i) \land b\downarrow_\sigma = \text{false} \}$ and
$a_k = \alpha \{ \sigma \mid \sigma \in \gamma(a_i) \land b\downarrow_\sigma = \text{true} \}$

• Join

Concrete: $C_k = C_i \cup C_j$

Abstract: $a_k = \alpha (\gamma(a_i) \cup \gamma(a_j)) = \text{lub} \{a_i, a_j\}$
Least Fixed Points
In The Abstract Domain

- We have a recursive equation with unknown “a”
 - Defined by a monotonic and continuous function on the domain Labels $\rightarrow A$

- We can use the least fixed-point theorem:
 - Start with $a^0 = \lambda L. \bot$ (aka: $a^0(L) = \bot$)
 - Apply the monotonic function to compute a^{k+1} from a^k
 - Stop when $a^{k+1} = a^k$

- Exactly the same computation as for the collecting semantics
 - What is new?
 - “There is nothing new under the sun but there are lots of old things we don't know.” - Ambrose Bierce
Least Fixed Points
In The Abstract Domain

• We have a **hope of termination**!

• Classic setup: A has only *uninteresting* chains (finite number of elements in each chain)
 - A has finite height h (= “*finite-height lattice*”)

• The computation takes $O(h \times |Labels|^2)$ steps
 - At each step “a” makes progress on at least one label
 - We can only make progress h times
 - And each time we must compute $|Labels|$ elements

• This is a **quadratic analysis**: good news
 - This is exactly the same as Kildall’s 1973 analysis of dataflow’s polynomial termination given a finite-height lattice and monotonic transfer functions.
Abstract Interpretation: Example

- Consider the following program, \(x > 0 \)

We want to do the sign analysis on it.
Abstract Domain for Sign Analysis

• Invent the complete sign lattice
 \[S = \{ \bot, -, 0, +, \top \} \]

• Construct the complete lattice
 \[A = \{ x, y \} \rightarrow S \]
 - With the usual point-wise ordering
 - Abstract state gives the sign for \(x \) and \(y \)

• We start with \(a^0 = \lambda L.\lambda v \in \{ x, y \}. \bot \)
 - aka: \(a^0(L,v) = \bot \)
Let’s Do It!

<table>
<thead>
<tr>
<th>Label</th>
<th>Iterations →</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>x +</td>
</tr>
<tr>
<td></td>
<td>y T</td>
</tr>
<tr>
<td>2</td>
<td>x ⊥</td>
</tr>
<tr>
<td></td>
<td>y ⊥</td>
</tr>
<tr>
<td>3</td>
<td>x ⊥</td>
</tr>
<tr>
<td></td>
<td>y ⊥</td>
</tr>
<tr>
<td>4</td>
<td>x ⊥</td>
</tr>
<tr>
<td></td>
<td>y ⊥</td>
</tr>
<tr>
<td>5</td>
<td>x ⊥</td>
</tr>
<tr>
<td></td>
<td>y ⊥</td>
</tr>
</tbody>
</table>
Let’s Do It!

<table>
<thead>
<tr>
<th>Label</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>y</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>y</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td></td>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>y</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>y</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>y</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>y</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Notes, Weaknesses, Solutions

• We abstracted the state of each variable independently

\[A = \{x, y\} \rightarrow \{\bot, -, 0, +, \top\} \]

• We lost relationships between variables
 - e.g., at a point \(x\) and \(y\) may always have the same sign
 - In the previous abstraction we get \(\{x := \top, y := \top\}\) at label 2 (when in fact \(y\) is always positive!)

• We can also abstract the state as a whole

\[A = \mathcal{P}(\{\bot, -, 0, +, \top\} \times \{\bot, -, 0, +, \top\}) \]
Other Abstract Domains

• Range analysis
 - Lattice of ranges: \(R = \{ \bot, [n..m], (-\infty, m], [n, +\infty), \top \} \)
 - It is a complete lattice
 • \([n..m] \sqcup [n’..m’] = [\min(n, n’)..\max(m, m’)]\]
 • \([n..m] \sqcap [n’..m’] = [\max(n, n’)..\min(m, m’)]\]
 • With appropriate care in dealing with \(\infty \)
 - \(\beta : \mathbb{Z} \to R \) such that \(\beta(n) = [n..n] \)
 - \(\alpha : \mathcal{P}(\mathbb{Z}) \to R \) such that \(\alpha(S) = \lub \{ \beta(n) \mid n \in S \} = [\min(S)..\max(S)] \)
 - \(\gamma : R \to \mathcal{P}(\mathbb{Z}) \) such that \(\gamma(r) = \{ n \mid n \in r \} \)

• This lattice has **infinite-height chains**
 - So the abstract interpretation might not terminate!
Example of Non-Termination

• Consider this (common) program fragment

We want to do range analysis on it.
Example of Non-Termination

- Consider the sequence of abstract states at point 2:
 - \([1..1], [1..2], [1..3], \ldots\)
 - The analysis never terminates
 - Or terminates very late if the loop bound is known statically
Example of Non-Termination

- Consider the sequence of abstract states at point 2
 - [1..1], [1..2], [1..3], ...
 - The analysis never terminates
 - Or terminates very late if the loop bound is known statically

- It is time to approximate even more: widening

- We redefine the join (lub) operator of the lattice to ensure that from [1..1] upon union with [2..2] the result is [1..+∞) and not [1..2]

- Now the sequence of states is
 - [1..1], [1, +∞), [1, +∞) Done (no more infinite chains)
Formal Definition of Widening
(Cousot 16.399 “Abstract Interpretation”, 2005)

- A widening $\triangledown : (P \times P) \rightarrow P$ on a poset $\langle P, \sqsubseteq \rangle$ satisfies:
 - $\forall x, y \in P . \ x \sqsubseteq (x \triangledown y) \land y \sqsubseteq (x \triangledown y)$
 - For all increasing chains $x^0 \sqsubseteq x^1 \sqsubseteq \ldots$ the increasing chain $y^0 = \text{def } x^0, \ldots, y^{n+1} = \text{def } y^n \triangledown x^{n+1}, \ldots$ is not strictly increasing.

- Two different main uses:
 - Approximate missing lubs. \textit{(Not for us.)}
 - Convergence acceleration. \textit{(This is the real use.)}
 - A widening operator can be used to effectively compute an upper approximation of the least fixpoint of $F \in L \triangledown L$ starting from below when L is computer-representable but does not satisfy the ascending chain condition.
Formal Widening Example

\[[1,1] \triangledown [1,2] = [1, +\infty) \]

- **Range Analysis on z:**

 L0: \(z := 1 ; \)

 L1: while \(z < 99 \) do

 L2: \(z := z + 1 \)

 L3: done /* \(z \geq 99 \) */

 L4:

\[x^{L_i}_j = \text{def} \text{ the } j\text{th iterative attempt to compute an abstract value for } z \text{ at label } L_i \]

Recall \(\text{lub } S = [\min(S) .. \max(S)] \)

\(\text{lub } \{[2, +\infty), [1, +\infty)\} = \{[1, +\infty]\} \)

<table>
<thead>
<tr>
<th>Original (x^i)</th>
<th>Widened (y^i)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x^{L_0}_0 = \bot)</td>
<td>(y^{L_0}_0 = \bot)</td>
</tr>
<tr>
<td>(x^{L_1}_0 = [1,1])</td>
<td>(y^{L_1}_0 = [1,1])</td>
</tr>
<tr>
<td>(x^{L_2}_0 = [1,1])</td>
<td>(y^{L_2}_0 = [1,1])</td>
</tr>
<tr>
<td>(x^{L_3}_0 = [2,2])</td>
<td>(y^{L_3}_0 = [2,2])</td>
</tr>
<tr>
<td>(x^{L_2}_1 = [1,2])</td>
<td>(y^{L_2}_1 = [1, +\infty))</td>
</tr>
<tr>
<td>(x^{L_3}_1 = [2, +\infty))</td>
<td>(y^{L_3}_1 = [2, +\infty))</td>
</tr>
<tr>
<td>(x^{L_4}_0 = [99, +\infty))</td>
<td>(y^{L_4}_0 = [99, +\infty))</td>
</tr>
</tbody>
</table>

stable (fewer than 99 iterations!)
Other Abstract Domains

• Linear relationships between variables
 - A convex **polyhedron** is a subset of $$\mathbb{Z}^k$$ whose elements satisfy a number of inequalities:
 $$a_1x_1 + a_2x_2 + ... + a_kx_k \geq c_i$$
 - This is a complete lattice; linear programming methods compute lubs

• Linear relationships with at most two variables
 - Convex polyhedra but with $$\leq 2$$ variables per constraint
 - Octagons ($$x \pm y \geq c$$) have efficient algorithms

• Modulus constraints (e.g. even and odd)
Abstract Chatter

• **AI, Dataflow and Software Model Checking**
 - The big three (aside from flow-insensitive type systems) for program analyses

• Are in fact quite related:
 - David Schmidt. *Data flow analysis is model checking of abstract interpretation*. POPL ’98.

• AI is usually flow-sensitive (per-label answer)

• AI can be path-sensitive (if your abstract domain includes \lor, for example), which is just where model checking uses BDD’s

• Metal, SLAM, ESP, ... can all be viewed as AI
Abstract Interpretation
Conclusions

- AI is a very powerful technique that underlies a large number of program analyses
 - Including Dataflow Analysis and Model Checking
- AI can also be applied to functional and logic programming languages
- There are a few success stories
 - Strictness analysis for lazy functional languages
 - PolySpace for linear constraints
- In most other cases however AI is still slow
- When the lattices have infinite height and widening heuristics are used the result becomes unpredictable