More Lambda Calculus
and
Intro to Type Systems
One Slide Summary

- The **lambda calculus** is a model of computation or a programming language that is as expressive as a Turing machine.

- The lambda calculus centers on **function definition** and **function application**. The meaning of function application is given by substitution (**beta reduction**).

- We can **encode** the **booleans** (and, or, not, if) and the **numbers** (zero, successor, add, multiply, equality, looping) via lambdas.
Plan

• Heavy Class Participation
 - Thus, wake up! (*not actually kidding*)

• Lambda Calculus
 - How is it related to real life?
 - Encodings
 - Fixed points

• Type Systems
 - Overview
 - Static, Dynamic
 - Safety, Judgments, Derivations, Soundness
Lambda Review

• λ-calculus is a calculus of functions

$$e := x \mid \lambda x. \ e \mid e_1 \ e_2$$

• Several evaluation strategies exist based on β-reduction

$$(\lambda x. e) \ e' \rightarrow_\beta [e'/x] \ e$$

• How does this simple calculus relate to real programming languages?
Functional Programming

• The λ-calculus is a prototypical functional language with:
 - no side effects
 - several evaluation strategies
 - lots of functions
 - nothing but functions (pure λ-calculus does not have any other data type)

• How can we program with functions?
• How can we program with only functions?
Programming With Functions

- **Functional programming** is a programming style that relies on lots of functions
- A typical functional paradigm is *using functions as arguments or results of other functions*
 - Called “*higher-order programming*”
- Some “impure” functional languages permit side-effects (e.g., Lisp, Scheme, ML, Python)
 - references (pointers), in-place update, arrays, exceptions
 - Others (and by “others” we mean “Haskell”) use monads to model state updates
Variables in Functional Languages

• We can introduce new variables:
 \[\text{let } x = e_1 \text{ in } e_2 \]
 - \(x \) is **bound** by let
 - \(x \) is **statically scoped** in (a subset of) \(e_2 \)

• This is pretty much like \((\lambda x. e_2) e_1\)

• In a functional language, variables are never updated
 - they are just **names for expressions or values**
 - e.g., \(x \) is a name for the value denoted by \(e_1 \) in \(e_2 \)

• This models the meaning of “let” in math (proofs)
Referential Transparency

• In “pure” functional programs, we can reason equationally, by substitution
 - Called “referential transparency”
 \[
 \text{let } x = e_1 \text{ in } e_2 \quad \equiv \quad [e_1/x]e_2
 \]

• In an imperative language a side-effect in \(e_1 \) might invalidate the above equation

• The behavior of a function in a “pure” functional language depends only on the actual arguments
 - Just like a function in math
 - This makes it easier to understand and to reason about functional programs
How Tough Is Lambda?

- Given e_1 and e_2, how complex (a la CS theory) is it to determine if:

 $$e_1 \rightarrow^* e \text{ and } e_2 \rightarrow^* e$$
Expressiveness of λ-Calculus

- The λ-calculus is a minimal system but can express:
 - data types (integers, booleans, lists, trees, etc.)
 - branching
 - recursion
- This is enough to encode Turing machines
 - We say the lambda calculus is Turing-complete
- Corollary: $e_1 =_\beta e_2$ is undecidable
- Still, how do we encode all these constructs using only functions?
- Idea: encode the “behavior” of values and not their structure
Encoding Booleans in \(\lambda \)-Calculus

• What can we do with a boolean?
 - we can make a binary choice (= “if” statement)

• A boolean is a function that, given two choices, selects one of them:
 - true = \(\lambda x. \lambda y. x \)
 - false = \(\lambda x. \lambda y. y \)
 - if \(E_1 \) then \(E_2 \) else \(E_3 \) = \(E_1 \ E_2 \ E_3 \)

• Example: “if true then \(u \) else \(v \)” is

\[
(\lambda x. \lambda y. x) \ u \ v \rightarrow_\beta (\lambda y. u) \ v \rightarrow_\beta u
\]
More Boolean Encodings

• Let’s try to do boolean \textbf{or} together

• Recall:
 - \texttt{true} = \texttt{\texttt{\lambda x. \lambda y. x}}
 - \texttt{false} = \texttt{\texttt{\lambda x. \lambda y. y}}
 - if \texttt{E}_1 \texttt{then E}_2 \texttt{else E}_3 = \texttt{E}_1 \texttt{ E}_2 \texttt{ E}_3

• We want \textbf{or} to take in two booleans and yield a result that is a boolean

• How can we do this?
A Trying Ordeal

• Recall:
 - true = \(\lambda x. \lambda y. x \)
 - false = \(\lambda x. \lambda y. y \)
 - if \(E_1 \) then \(E_2 \) else \(E_3 \) = \(E_1 \ E_2 \ E_3 \)

• Intuition:
 - or \(a \ b \) = if \(a \) then true else \(b \)

• Either of these will work:
 - or = \(\lambda a. \lambda b. a \ true \ b \)
 - or = \(\lambda a. \lambda b. \lambda x. \lambda y. a \ x \ (b \ x \ y) \)
Final Boolean Encodings

- Think about how to do **and** and **not**
- Without peeking! Now come up and do it!
Another Demand

• How to do **and** and **not**

 - **and** a b = if a then b else false
 - **and** = def λa. λb. a b false
 - **and** = def λa. λb. λx. λy. a (b x y) y

 - **not** a = if a then false else true
 - **not** = def λa. a false true
 - **not** = def λa. λx. λy. a y x
Encoding Pairs in \(\lambda\)-Calculus

- What can we do with a pair?
 - we can access one of its elements
 (= “.field access”)

- A pair is a function that, given a boolean, returns the first or second element

\[
\begin{align*}
mkpair x y &= \text{def} \quad \lambda b. b x y \\
fst p &= \text{def} \quad p \text{ true} \\
snd p &= \text{def} \quad p \text{ false} \\
\end{align*}
\]

- \(\text{fst (mkpair x y)} \rightarrow_\beta (\text{mkpair x y}) \text{ true}\)
 \(\rightarrow_\beta \text{ true x y} \rightarrow_\beta x\)
Encoding Numbers in λ–Calculus

- What can we *do* with a natural number?
 - What do you, the viewers at home, think?
Encoding Numbers λ-Calculus

• What can we do with a natural number?
 - we can iterate a number of times over some function (= “for loop”)

• A natural number is a function that given an operation f and a starting value s, applies f a number of times to s:

 $0 =_{\text{def}} \lambda f. \lambda s. s$

 $1 =_{\text{def}} \lambda f. \lambda s. f \ s$

 $2 =_{\text{def}} \lambda f. \lambda s. f \ (f \ s)$

 - Very similar to List.fold_left and friends

• These are numerals in a unary representation

• Called Church numerals
Test Time!

- How would you encode the **successor function** \((\text{succ } x = x+1)\)?
- How would you encode more general **addition**?
- Recall: \(4 = \text{def } \lambda f. \lambda s. f f f (f s)\)
Computing with Natural Numbers

• The successor function

 \[\text{succ } n = \lambda f. \lambda s. \ f \ (n \ f \ s) \]

 or

 \[\text{succ } n = \lambda f. \lambda s. \ n \ f \ (f \ s) \]

• Addition

 \[\text{add } n_1 \ n_2 = \text{succ } n_1 \ n_2 \]

• Multiplication

 \[\text{mult } n_1 \ n_2 = \text{add } n_1 \ (\text{add } n_2) \ 0 \]

• Testing equality with 0

 \[\text{iszero } n = n \ (\lambda b. \ false) \ true \]

• Subtraction

 - Is not instructive, but makes a fun exercise ...
Computation Example

• What is the result of the application \textit{add} 0?

$$(\lambda n_1. \lambda n_2. n_1 \text{ succ } n_2) \ 0 \ \rightarrow_{\beta}$$

$$\lambda n_2. 0 \text{ succ } n_2 =$$

$$\lambda n_2. (\lambda f. \lambda s. s) \text{ succ } n_2 \ \rightarrow_{\beta}$$

$$\lambda n_2. n_2 =$$

$$\lambda x. x$$

• By computing with functions we can express some optimizations
 - But we need to \textcolor{red}{reduce under the lambda}
 - Thus this “never” happens in practice
Toward Recursion

- Given a predicate P, encode the function “find” such that “$\text{find } P \ n$” is the smallest natural number which is larger than n and satisfies P.

- Claim: with find we can encode all recursion

 Intuitively, why is this true?
Encoding Recursion

- Given a predicate P encode the function “find” such that “find P n” is the smallest natural number which is larger than n and satisfies P
- \textbf{find} satisfies the equation
 \[
 \text{find } p \ n = \text{if } p \ n \text{ then } n \text{ else find } p (\text{succ } n)
 \]
- Define
 \[
 F = \lambda f. \lambda p. \lambda n. (p \ n) \ n \ (f \ p \ (\text{succ } n))
 \]
- We need a \textbf{fixed point} of F
 \[
 \text{find } = F \ \text{find}
 \]
 \[
 \text{or}
 \]
 \[
 \text{find } p \ n = F \ \text{find } p \ n
 \]
The Fixed-Point Combinator Y

• Let \(Y = \lambda F. (\lambda y. F(y \ y)) (\lambda x. F(x \ x)) \)
 - This is called the fixed-point combinator
 - Verify that \(Y \ F \) is a fixed point of \(F \)
 \[
 Y \ F \rightarrow_\beta (\lambda y. F(y \ y)) (\lambda x. F(x \ x)) \rightarrow_\beta F(Y \ F)
 \]
 - Thus \(Y \ F =_\beta F(Y \ F) \)

• Given any function in \(\lambda \)-calculus we can define its fixed-point (w00t! why do we not win here?)
• Thus we can define “find” as the fixed-point of the function \(F \) from the previous slide
• Essence of recursion is the self-application “\(y \ y \)”
Expressiveness of Lambda Calculus

• Encodings are fun
 - Yes! Yes they are!

• But programming in pure λ-calculus is painful

• So we will add constants (0, 1, 2, ..., true, false, if-then-else, etc.)

• Next we will add types
Still Going!

- One minute break
- Stretch!
In this 1943 Antoine de Saint-Exupery novel the title character lives on an asteroid with a rose but eventually travels to Earth.
Springfield, Illinois

- Animaniacs
- Two player game
- Players take turns naming State Capitals until one player says “Springfield, Illinois”
- The player to say “Springfield, Illinois” receives points equal to the number of previously-named Capitals
- Why is this game interesting?
Q: Computer Science (姚期智)

- This Shanghai-born Turing Award winner is known for contributions to the theory of computation. He formulated the Millionaire's Problem and stated this minimax principle: “the expected cost of any randomized algorithm for solving a given problem, on the worst case input for that algorithm, can be no better than the expected cost, for a worst-case random probability distribution on the inputs, of the deterministic algorithm that performs best against that distribution.”
Types

A program variable can assume a range of values during the execution of a program.

An upper bound of such a range is called a type of the variable.

- A variable of type "bool" is supposed to assume only boolean values.
- If x has type "bool" then the boolean expression "not(x)" has a sensible meaning during every run of the program.
Typed and Untyped Languages

- **Untyped languages**
 - Do *not* restrict the range of values for a given variable
 - Operations might be applied to inappropriate arguments. The behavior in such cases might be unspecified
 - The pure λ-calculus is an extreme case of an untyped language (however, its behavior is completely specified)

- **(Statically) Typed languages**
 - Variables are assigned (non-trivial) types
 - A type system keeps track of types
 - Types might or might not appear in the program itself
 - Languages can be explicitly typed or implicitly typed
The Purpose Of Types

• The foremost purpose of types is to prevent certain types of run-time execution errors

• Traditional trapped execution errors
 - Cause the computation to stop immediately
 - And are thus well-specified behavior
 - Usually enforced by hardware
 - e.g., Division by zero, floating point op with a NaN
 - e.g., Dereferencing the address 0 (on most systems)

• Untrapped execution errors
 - Behavior is unspecified (depends on the state of the machine = this is very bad!)
 - e.g., accessing past the end of an array
 - e.g., jumping to an address in the data segment
Execution Errors

- A program is deemed **safe** if it does *not* cause untrapped errors
 - Languages in which all programs are safe are **safe languages**
- For a given language we can designate a set of forbidden errors
 - A superset of the untrapped errors, usually including some trapped errors as well
 - e.g., null pointer dereference
- **Modern Type System Powers:**
 - prevent race conditions (e.g., Flanagan TLDI ‘05)
 - prevent insecure information flow (e.g., Li POPL ’05)
 - prevent resource leaks (e.g., Vault, Weimer)
 - help with generic programming, probabilistic languages, ...
 - ... are often combined with dynamic analyses (e.g., CCured)
Preventing Forbidden Errors - Static Checking

• Forbidden errors can be caught by a combination of static and run-time checking

• Static checking
 - Detects errors early, \textit{before testing}
 - Types provide the necessary static information for static checking
 - e.g., ML, Modula-3, Java
 - Detecting certain errors statically is \textit{undecidable} in most languages
Preventing Forbidden Errors - Dynamic Checking

• Required when static checking is undecidable
 - e.g., array-bounds checking

• Run-time encodings of types are still used (e.g. Lisp)

• Should be limited since it delays the manifestation of errors

• Can be done in hardware (e.g. null-pointer)
Safe Languages

- There are typed languages that are not safe ("weakly typed languages")
- All safe languages use types (static or dynamic)

<table>
<thead>
<tr>
<th></th>
<th>Typed</th>
<th>Untyped</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Static</td>
<td>Dynamic</td>
</tr>
<tr>
<td>Safe</td>
<td>ML, Java, Ada, C#, Haskell, ...</td>
<td>Lisp, Scheme, Ruby, Perl, Smalltalk, PHP, Python, ...</td>
</tr>
<tr>
<td>Unsafe</td>
<td>C, C++, Pascal, ...</td>
<td>?</td>
</tr>
</tbody>
</table>
Why Typed Languages?

- **Development**
 - *Type checking catches early many mistakes*
 - Reduced debugging time
 - Typed signatures are a powerful basis for design
 - Typed signatures enable separate compilation

- **Maintenance**
 - Types act as checked specifications
 - Types can enforce abstraction

- **Execution**
 - Static checking reduces the need for dynamic checking
 - *Safe languages are easier to analyze statically*
 - the compiler can generate better code
Homework

- Read Cardelli article
- Read Wright & Matthias article
- Homework 5 Due Soon