Simply-Typed Lambda Calculus

You guys are both my witnesses... He insinuated that ZFC set theory is superior to Type Theory!

Before going down a steep hill like this, one should always give his sled a safety check.

Right.

Seat belts? None.

Signals? None.

Brakes? None.

Steering? None.

WHEEEEEE
Back to School

- What is operational semantics? When would you use contextual (small-step) semantics?
- What is denotational semantics?
- What is axiomatic semantics? What is a verification condition?
Today’s (Short?) Cunning Plan

- Type System Overview
- First-Order Type Systems
- Typing Rules
- Typing Derivations
- Type Safety
Types

- A program variable can assume a range of values during the execution of a program.

- An upper bound of such a range is called a type of the variable.
 - A variable of type “bool” is supposed to assume only boolean values.
 - If x has type “bool” then the boolean expression “not(x)” has a sensible meaning during every run of the program.
Typed and Untyped Languages

- **Untyped languages**
 - Do *not* restrict the range of values for a given variable
 - Operations might be applied to inappropriate arguments. The behavior in such cases might be unspecified
 - The pure λ-calculus is an extreme case of an untyped language (however, its behavior is completely specified)

- **(Statically) Typed languages**
 - Variables are assigned (non-trivial) types
 - A type system keeps track of types
 - Types might or might not appear in the program itself
 - Languages can be explicitly typed or implicitly typed
The Purpose Of Types

- The foremost purpose of types is to prevent certain types of run-time execution errors
- Traditional trapped execution errors
 - Cause the computation to stop immediately
 - And are thus well-specified behavior
 - Usually enforced by hardware
 - e.g., Division by zero, floating point op with a NaN
 - e.g., Dereferencing the address 0 (on most systems)
- Untrapped execution errors
 - Behavior is unspecified (depends on the state of the machine = this is very bad!)
 - e.g., accessing past the end of an array
 - e.g., jumping to an address in the data segment
Execution Errors

• A program is deemed safe if it does not cause untrapped errors
 - Languages in which all programs are safe are safe languages
• For a given language we can designate a set of forbidden errors
 - A superset of the untrapped errors, usually including some trapped errors as well
 • e.g., null pointer dereference
• Modern Type System Powers:
 - prevent race conditions (e.g., Flanagan TLDI ‘05)
 - prevent insecure information flow (e.g., Li POPL ’05)
 - prevent resource leaks (e.g., Vault, Weimer)
 - help with generic programming, probabilistic languages, ...
 - ... are often combined with dynamic analyses (e.g., CCured)
Preventing Forbidden Errors - Static Checking

- Forbidden errors can be caught by a combination of static and run-time checking
- Static checking
 - Detects errors early, *before testing*
 - Types provide the necessary static information for static checking
 - e.g., ML, Modula-3, Java
 - Detecting certain errors statically is *undecidable* in most languages
Preventing Forbidden Errors - Dynamic Checking

• Required when static checking is undecidable
 - e.g., array-bounds checking
• Run-time encodings of types are still used (e.g. Lisp)
• Should be limited since it delays the manifestation of errors
• Can be done in hardware (e.g. null-pointer)
Why Typed Languages?

• Development
 - *Type checking catches early many mistakes*
 - Reduced debugging time
 - Typed signatures are a powerful basis for design
 - Typed signatures enable separate compilation

• Maintenance
 - Types act as checked specifications
 - Types can enforce abstraction

• Execution
 - Static checking reduces the need for dynamic checking
 - *Safe languages are easier to analyze statically*
 • the compiler can generate better code
Why Not Typed Languages?

- Static type checking imposes constraints on the programmer
 - Some valid programs might be rejected
 - But often they can be made well-typed easily
 - Hard to step outside the language (e.g. OO programming in a non-OO language, but cf. Ruby, OCaml, etc.)

- Dynamic safety checks can be costly
 - 50% is a possible cost of bounds-checking in a tight loop
 - In practice, the overall cost is much smaller
 - Memory management must be automatic ⇒ need a garbage collector with the associated run-time costs
 - Some applications are justified in using weakly-typed languages (e.g., by external safety proof)
Safe Languages

- There are typed languages that are not safe ("weakly typed languages")
- All safe languages use types (static or dynamic)

<table>
<thead>
<tr>
<th></th>
<th>Typed</th>
<th>Untyped</th>
</tr>
</thead>
<tbody>
<tr>
<td>Static</td>
<td>Static Languages: ML, Java, Ada, C#, Haskell, ...</td>
<td>Dynamic Languages: Lisp, Scheme, Ruby, Perl, Smalltalk, PHP, Python, ...</td>
</tr>
<tr>
<td>Dynamic</td>
<td></td>
<td>Safe Languages: λ-calculus</td>
</tr>
<tr>
<td>Safe</td>
<td></td>
<td>Unsafe Languages: C, C++, Pascal, ...</td>
</tr>
<tr>
<td>Unsafe</td>
<td></td>
<td>Assembly</td>
</tr>
</tbody>
</table>
Properties of Type Systems

• How do types differ from other program annotations?
 - Types are more precise than comments
 - Types are more easily mechanizable than program specifications

• Expected properties of type systems:
 - Types should be enforceable
 - Types should be checkable algorithmically
 - Typing rules should be transparent
 - Should be easy to see why a program is not well-typed
Why Formal Type Systems?

• Many typed languages have informal descriptions of the type systems (e.g., in language reference manuals)
• A fair amount of careful analysis is required to avoid false claims of type safety
• A formal presentation of a type system is a precise specification of the type checker
 - And allows formal proofs of type safety
• But even informal knowledge of the principles of type systems help
Formalizing a Language

1. Syntax
 • Of expressions (programs)
 • Of types
 • Issues of binding and scoping

2. Static semantics (typing rules)
 • Define the typing judgment and its derivation rules

3. Dynamic Semantics (e.g., operational)
 • Define the evaluation judgment and its derivation rules

4. Type soundness
 • Relates the static and dynamic semantics
 • State and prove the soundness theorem
Typing Judgments

- **Judgment** (recall)
 - A statement J about certain formal entities
 - Has a truth value \(\vdash J \)
 - Has a derivation \(\vdash J \) (= “a proof”)

- A common form of **typing judgment**:
 \[\Gamma \vdash e : \tau \]
 (e is an expression and \(\tau \) is a type)

- \(\Gamma \) (Gamma) is a set of **type assignments for the free variables** of e
 - Defined by the grammar \(\Gamma ::= \cdot \mid \Gamma, x : \tau \)
 - Type assignments for variables not free in e are not relevant
 - e.g., \(x : \text{int}, y : \text{int} \vdash x + y : \text{int} \)
Typing rules

- Typing rules are used to derive typing judgments

Examples:

\[
\Gamma \vdash 1 : \text{int} \\
\Gamma \vdash x : \tau \\
\Gamma \vdash e_1 : \text{int} \quad \Gamma \vdash e_2 : \text{int} \\
\Gamma \vdash e_1 + e_2 : \text{int}
\]
Typing Derivations

• A **typing derivation** is a derivation of a typing judgment (big surprise there ...)

• Example:

 \[
 x : \text{int} \vdash x : \text{int} \quad x : \text{int} \vdash 1 : \text{int} \\
 x : \text{int} \vdash x : \text{int} \quad x : \text{int} \vdash x + 1 : \text{int} \\
 x : \text{int} \vdash x + (x + 1) : \text{int}
 \]

• We say \(\Gamma \vdash e : \tau \) to mean **there exists a derivation** of this typing judgment (= “we can prove it”)

• **Type checking**: given \(\Gamma, e \) and \(\tau \) find a derivation

• **Type inference**: given \(\Gamma \) and \(e \), find \(\tau \) and a derivation
Proving Type Soundness

• A typing judgment is either true or false
• Define what it means for a value to have a type
 \(v \in \| \tau \| \)
 (e.g. \(5 \in \| \text{int} \| \) and \(\text{true} \in \| \text{bool} \| \))
• Define what it means for an expression to have a type
 \(e \in \tau \iff \forall v. (e \Downarrow v \Rightarrow v \in \| \tau \|) \)
• Prove type soundness
 If \(\vdash e : \tau \) \(\text{then } e \in \tau \)
 or equivalently
 If \(\vdash e : \tau \) and \(e \Downarrow v \) \(\text{then } v \in \| \tau \| \)
• This implies safe execution (since the result of a unsafe execution is not in \(\| \tau \| \) for any \(\tau \))
Upcoming Exciting Episodes

- We will give formal description of **first-order** type systems (no type variables)
 - Function types (simply typed λ-calculus)
 - Simple types (integers and booleans)
 - Structured types (products and sums)
 - Imperative types (references and exceptions)
 - Recursive types (linked lists and trees)
- The type systems of most common languages are **first-order**
- Then we move to **second-order** type systems
 - Polymorphism and abstract types
This 1988 animated movie written and directed by Isao Takahata for Studio Ghibli was considered by Roger Ebert to be one of the most powerful anti-war films ever made. It features Seita and his sister Setsuko and their efforts to survive outside of society during the firebombing of Tokyo.
Computer Science

- This American-Canadian Turing-award winner is known for major contributions to the fields of complexity theory and proof complexity. He is known for formalizing the polynomial-time reduction, NP-completeness, P vs. NP, and showing that SAT is NP-complete. This was all done in the seminal 1971 paper “The Complexity of Theorem Proving Procedures.”
This 1985 falling-blocks computer game was invented by Alexey Pajitnov (Алексей Пажитнов) and inspired by pentominoes.
Simply-Typed Lambda Calculus

• Syntax:

Terms $e ::= x$ | $\lambda x:\tau. \ e$ | $e_1 \ e_2$

| n | $e_1 + e_2$ | iszero e

| true | false | not e

| if e_1 then e_2 else e_3

Types $\tau ::= \text{int} | \text{bool} | \tau_1 \rightarrow \tau_2$

• $\tau_1 \rightarrow \tau_2$ is the function type
• \rightarrow associates to the right
• Arguments have typing annotations $:\tau$
• This language is also called F_1
Static Semantics of F_1

• The typing judgment

\[\Gamma \vdash e : \tau \]

• Some (simpler) typing rules:

\[
\begin{align*}
\Gamma \vdash x : \tau & \quad \text{(where } x : \tau \in \Gamma \text{)} \\
\Gamma, x : \tau \vdash e : \tau' & \quad \text{(where } \Gamma, x : \tau \vdash e : \tau' \text{)} \\
\Gamma \vdash \lambda x : \tau . e : \tau \rightarrow \tau' & \quad \text{(where } \Gamma \vdash \lambda x : \tau . e : \tau \rightarrow \tau' \text{)} \\
\Gamma \vdash e_1 : \tau_2 \rightarrow \tau & \quad \Gamma \vdash e_2 : \tau_2 \\
\Gamma \vdash e_1 e_2 : \tau & \quad \text{(where } \Gamma \vdash e_1 : \tau_2 \rightarrow \tau \text{ and } \Gamma \vdash e_2 : \tau_2 \text{)}
\end{align*}
\]
More Static Semantics of F_1

$\Gamma \vdash e_1 : \text{int} \quad \Gamma \vdash e_2 : \text{int}$

$\Gamma \vdash n : \text{int}$

$\Gamma \vdash e_1 + e_2 : \text{int}$

Why do we have this mysterious gap? I don’t know either!
Typing Derivation in F_1

- Consider the term
 \[\lambda x : \text{int. } \lambda b : \text{bool. } \text{if } b \text{ then } f \ x \text{ else } x \]
 - With the initial typing assignment $f : \text{int } \to \text{Int}$
 - Where $\Gamma = f : \text{int } \to \text{int}, x : \text{int}, b : \text{bool}$

\[
\begin{array}{c}
\Gamma \vdash f : \text{int } \to \text{int} \quad \Gamma \vdash x : \text{int} \\
\hline
\Gamma \vdash b : \text{bool} \quad \Gamma \vdash f \ x : \text{int} \\
\hline
\Gamma \vdash x : \text{int} \\
\hline
\hline
f : \text{int } \to \text{int}, x : \text{int}, b : \text{bool} \vdash \text{if } b \text{ then } f \ x \text{ else } x : \text{int} \\
\hline
\hline
f : \text{int } \to \text{int}, x : \text{int} \vdash \lambda b : \text{bool. } \text{if } b \text{ then } f \ x \text{ else } x : \text{bool } \to \text{int} \\
\hline
\hline
\hline
f : \text{int } \to \text{int} \vdash \lambda x : \text{int. } \lambda b : \text{bool. } \text{if } b \text{ then } f \ x \text{ else } x : \text{int } \to \text{bool } \to \text{int}
\end{array}
\]
Type Checking in F_1

- Type checking is *easy* because
 - Typing rules are *syntax directed*
 - Typing rules are *compositional* (what does this mean?)
 - All local variables are annotated with types

- In fact, *type inference* is also *easy* for F_1

- Without type annotations an expression may have *no unique type*
 - $\vdash \lambda x. x : \text{int} \to \text{int}$
 - $\vdash \lambda x. x : \text{bool} \to \text{bool}$
Operational Semantics of F_1

• Judgment:

\[e \Downarrow v \]

• Values:

\[v ::= n \mid \text{true} \mid \text{false} \mid \lambda x:\tau. e \]

• The evaluation rules ...
 - Audience participation time: raise your hand and give me an evaluation rule.
Opsem of F_1 (Cont.)

- **Call-by-value** evaluation rules (sample)

\[
\begin{align*}
\lambda x : \tau.e & \Downarrow \lambda x : \tau.e \\
\lambda x : \tau.e' & \Downarrow \lambda x : \tau.e' \\
\quad e_1 & \Downarrow \lambda x : \tau.e' \\
\quad e_2 & \Downarrow v_2 \\
\left[v_2/x\right]e'_1 & \Downarrow v \\
\quad e_1 & \Downarrow v \\
\quad e_2 & \Downarrow v \\
\frac{e_1 \Downarrow n_1 \quad e_2 \Downarrow n_2}{n = n_1 + n_2} \\
\frac{n \Downarrow n}{e_1 + e_2 \Downarrow n} \\
\frac{e_1 \Downarrow \text{true} \quad e_1 \Downarrow v}{\text{if } e_1 \text{ then } e_1 \text{ else } e_f \Downarrow v} \\
\frac{e_1 \Downarrow \text{false} \quad e_f \Downarrow v}{\text{if } e_1 \text{ then } e_t \text{ else } e_f \Downarrow v}
\end{align*}
\]

Where is the Call-By-Value? How might we change it?

Evaluation is **undefined** for ill-typed programs!
Type Soundness for F_1

- Thm: If $\vdash e : \tau$ and $e \Downarrow v$ then $\vdash v : \tau$
 - Also called, subject reduction theorem, type preservation theorem

- This is one of the most important sorts of theorems in PL

- Whenever you make up a new safe language you are expected to prove this
 - Examples: Vault, TAL, CCured, ...

- Proof: next time!
Homework

• Read actually-exciting Leroy paper
• Finish Homework 5?
• Work on your projects!
 - Status Update Due