
ADDRESSING HIGH SEVERITY FAULTS IN WEB APPLICATION TESTING
Kinga Dobolyi and Westley Weimer

Department of Computer Science
University of Virginia

Charlottesville, VA, USA
{dobolyi,weimer}@virginia.edu

ABSTRACT

Extreme resource constraints in web application de-
velopment environments often lead to minimal formal test-
ing. This lack of testing compounds the problem of low
consumer retention. In this paper, we analyze an exist-
ing study of the consumer-perceived severities of 400 real-
world web application faults. We provide concrete guide-
lines to increase the perceived return-on-investment of test-
ing. We show that even coarse-grained, automated test
cases can detect high severity faults. Developers can also
mitigate consumer perceptions of fault severity by present-
ing faults using specific idioms that minimize disruptions
to application interaction. Finally, we examine the trade
offs between various user-session-based test suite reduction
approaches for web applications and the severity of uncov-
ered faults. Overall, we show that even modest testing ap-
proaches are able to provide significant predicted gains in
consumer satisfaction by focusing on flagging and prevent-
ing high severity faults.

KEY WORDS
Web application, design, testing, severity, reduction

1 Introduction

In the United States, over $204 billion were spent on In-
ternet retail sales in 2008 [13], and 73% of the US pop-
ulation used the Internet in that same year [17]. World-
wide, Internet-based transaction orders total several tril-
lions of dollars annually [2, 4]. At the same time, con-
sumers are exposed to several options for online interac-
tion, and customer loyalty to any particular website is no-
toriously low [22]. Unfortunately, most web applications
are developed without a formal process model [26], and
consumer satisfaction and retention are rarely formally ad-
dressed during the development and testing phases of pro-
duction. The challenge of maintaining consumer allegiance
is complicated by additional factors. For example, web ap-
plications have high availability requirements; one hour of
downtime at Amazon.com has been estimated to cost the
company $1.5 million dollars [25]. About 70% of top-
performing web applications are subject to user-visible fail-
ures. Web application development is also vulnerable to
high developer turnover rates, short delivery times, and

rapidly-evolving user needs that translate into an immense
pressure to change [27].

Consequently, the testing of web applications of-
ten becomes a casualty in the fight to meet deadlines
in the dynamic environment such projects are subject
to [27]. Although web applications are highly human-
centric, consumer-perceived fault severity has not been sys-
tematically approached as a metric for selecting develop-
ment and testing strategies in this domain. In this paper,
we study consumer-perceived high-severity faults in web
applications to direct development and testing strategies to-
wards their reduction in the context of such demanding de-
velopment circumstances. The main contributions of this
work are as follows:

• We demonstrate that the distribution of consumer-
perceived fault severities is independent of the type of
application. Neither the application type (e.g., shop-
ping cart or online forum), nor, to a lesser degree, the
technologies used (e.g., PHP or ASP.net) are predic-
tors of high or low severity faults.

• We show that certain fault features, distinct from
the context of the fault, are related to the consumer-
perceived severity of these faults. Given the same de-
fect in the source code, we demonstrate that the pre-
sentation of the fault to the user (e.g., via a stack trace
or a human-generated error message) influences the
likelihood that the consumer will return to the website
in the future.

• We explore the kinds of defects that are associated
with faults of varying consumer-perceived severity
levels. For example, many severe faults are due to
configuration errors that are easily detected by run-
ning a simple test suite, while less severe faults may
require changes to specific lines of application code,
and can be more difficult to detect.

• We study the trade offs between various test case re-
duction methodology costs and the severities of the
faults they uncover in the context of user-session-
based testing.

We supplement our discussion of the above items with
concrete suggestions that developers can implement. Our

first three contributions provide the foundation for guide-
lines that assume few resources will be allocated to test-
ing. Our last point provides developer guidance towards
choosing an optimal testing approach when performing au-
tomated testing. This paper examines the trade offs be-
tween various test suite reduction methodologies [31] in
terms of the consumer-perceived fault severities revealed
by each approach.

The structure of this paper is as follows. Section 2
summarizes a previously-published human study of the
consumer-perceived severities of real-world faults. In Sec-
tion 3 we find no correlation between application type or
programming language and the severity of faults. Section 4
demonstrates that approaches such as wrapping errors in
popups while maintaining application context can yield
lower consumer-perceived fault severity for otherwise-
equivalent errors. Section 5 relates fault causes to sever-
ities. In Section 6 we analyze various test suite reduction
approaches and their ability to produce reduced test suites
that locate high-severity faults. Section 7 places our work
in context and Section 8 concludes.

2 Consumer-Rated Severities of Real Faults

We hypothesize that web application fault severities have
several characteristics that impact consumer retention,
many of which can be controlled by developers during
product development and testing. In this section, we sum-
marize our previously-published [7] human study of 386
humans rating 400 real-world web application faults. The
study itself is not a contribution of this paper. Instead, we
analyze the results of the study to demonstrate that fault
severities are independent of application type; that different
presentations of the same fault yield different consumer-
judged severities; that different kinds of faults correlate
with different severities; and to evaluate test suite reduc-
tion with respect to severity.

Fault severity has been previously explored in the
context of industrial systems, but not with the focus on
consumers. For example, Ostrand and Weyuker exam-
ine faults distributions in large industrial software systems,
where fault severities were assigned according to fix pri-
ority [23]. In later work [24], they discover that these
developer-reported severities were highly subjective, fre-
quently inaccurate, and motivated by political considera-
tions. The human study we summarize uses consumer rat-
ings to avoid such complications. Human subjects were
presented with 400 real-world faults and asked to rate the
severity of each fault on the 5-point scale in Figure 1.
Severity was intentionally left formally undefined.

Each fault was presented as a scenario triple: (1) the
current webpage (as a screenshot), (2) a description of the
task the user is trying to accomplish in the scenario, and the
action taken, and (3) the next webpage (as a screenshot). As
a concrete example, a scenario may begin with a screenshot
of a login page for a particular website, which includes the
description that a valid username and password has been

Description Severity
Rating

I did not notice any fault 0
I noticed a fault, but I would return to 1
this website again
I noticed a fault, but I would probably 2
return to this website again
I noticed a fault, and I would not return 3
to this website again
I noticed a fault, and I would file a complaint 4

Figure 1. Severity scale for web application faults.

entered, and that the user is going to click the login button.
The subject is then presented with the next page, as if the lo-
gin button had been clicked. Such a current-next paradigm
can capture the inherently dynamic context of web applica-
tions, and users were freely allowed to toggle between the
two views before selecting a severity rating.

Four hundred faults were randomly but systematically
selected from the bug report databases of 17 open-source
benchmarks summarized in Figure 2. The description of
the fault was used to obtain or replicate a screenshot and
HTML code for the current and next pages, along with the
associated scenario description. Descriptions were supple-
mented with enough detail so that faults become apparent;
for example, if a user had some specific permissions on
a website to perform an activity, these were made known
to the human subject if they related to the perception of
the fault. Users were instructed to rate faults according to
their previous experience, and to assume all faults would
eventually be fixed upon subsequent returns to the website,
although this would occur at an unknown point between
the current time and up to one year in the future. Over
12,600 severity scores were recorded from 386 anonymous
humans, with at least 12 votes per fault.

Previous work presented this study and constructed a
formal model that agrees with average consumer-perceived
severities as often as humans agree with each other; a fo-
cus was placed on the automatic detection of high-severity
faults [7]. In this paper we analyze the results of the
study to support claims about the distribution and context
of faults, and the efficacy of test case reduction.

3 Fault Severity Distribution by Application

Our study of 400 real-world faults revealed an approxi-
mately even distribution of low, medium, medium-high,
and severe faults (labeled with average ratings of ≤ 1,
≤ 2, < 2.5, and ≥ 2.5 respectively, see Figure 1) within
each of our benchmarks. Although lower-severity faults
are likely underrepresented in this population, because they
are more frequently not reported or recorded, the relatively
high number of severe faults we witnessed provided us with
a large data set of severe faults to study.

We first seek to identify correlations between high
severity faults and either the type or the web application

Name Language Description Faults
Prestashop* PHP e-commerce 30
Dokuwiki PHP wiki 30
Dokeos PHP e-learning 22
Click Java JEE webapp 3

framework
VQwiki Java wiki 6
OpenRealty* PHP real estate listing 30

management
OpenGoo PHP web office 30
Zomplog PHP blog 30
Aef PHP forum 30
Bitweaver PHP content mgmt 30

framework
ASPgallery ASP.NET gallery 30
YetAnother ASP.NET forum 30
Forum
ScrewTurn ASP.NET wiki 30
Mojo ASP.NET content mgmt 30

system
Zen Cart PHP e-commerce 30
Gallery PHP gallery 30
other - - 9
Vanilla* PHP forum 30

Figure 2. Real-world web applications mined for faults. All
applications were sources for human-reported faults taken from
defect report repositories, as well as non-faults taken from indica-
tive usage. An asterisk indicates an application used as a source
for manually-injected faults in Section 6. The Vanilla benchmark
is used only in Section 6.

(e.g., a shopping cart versus a forum), or the underly-
ing technologies involved (e.g., PHP or ASP.net). Fig-
ure 3 presents the distribution of fault severities across our
17 benchmarks, normalized to 100% for each application.
Figure 4 shows the Spearman correlation between various
features, such as the programming language used or appli-
cation type, and consumer-perceived fault severity. The ap-
plication features all hover between no correlation and very
weak correlation. While a limited argument could be made
that ASP.net and image gallery applications are slightly
more likely to have high-severity faults, it is the relative
values that are important. Our results generally refute the
hypothesis that certain application types have higher user-
perceived fault severities. For example, among benchmarks
in our dataset with at least 30 faults, both the benchmark
with the highest number of severe faults (Zen) and the low-
est number of severe faults (Prestashop) were e-commerce,
shopping-cart based applications. Similarly, the choice of
development language and infrastructure in these bench-
marks did not strongly correlate with fault severity.

4 Fault Features Related to Severities

Our primary goal is to provide empirically-backed recom-
mendations to help guide developers to produce reliable
web applications under the assumption of limiting testing
resources. We begin by demonstrating that faults of vary-

0

20

40

60

80

100

120

Aef

ASPga
lle

ry

Bitw
ea

ve
r

C
lic

k

D
ok

eo
s

D
ok

uw
ik
i

G
al
le
ry

M
oj
o

O
pe

nG
oo

O
pe

nr
ea

lit
y

Pre
st
as

ho
p

Scr
ew

Tur
n

vq
w
ik
i

Yet
Ano

th
er

For
um

Zen
 C

ar
t

Zom
pl
og

Benchmark applications

P
e

rc
e

n
t

o
f

fa
u

lt
s

█ severe (≥ 2.5)
█ non-severe

Figure 3. The breakdown of severe faults for each benchmark
application. Each application is individually normalized to 100%.
There is no apparent pattern between the type of application and
its fault severity distribution (see also Figure 4).

Feature SRCC with fault severity
is written in PHP 0.16
is written in ASP.net 0.32
is a Gallery 0.38
is a Wiki 0.35
is a Forum 0.34
is a Content Mgmt. System 0.30
is E-commerce 0.22

Figure 4. Spearman’s Ranking Correlation Coefficient (SRCC)
between an application feature and the severity of its faults. An
SRCC of 0.3–0.5 is considered weak, while 0–0.3 indicates little
to no correlation [10].

ing severities can be classified according to both contextual
and context-independent characteristics.

We define contextual features to be visual stimuli or
use-case based characteristics exposed to the user as part
of the fault manifestation. Contextual features are tied to
the underlying origin of the defect in the source code. Ex-
amples of such visual stimuli include stack traces, missing
images, and small cosmetic errors. Use-case based features
associated with faults include authentication, permission,
or upload scenarios.

Context-independent features, by contrast, can be
viewed independently of the actual context of the fault.
Given the same source-level defect, the multiple ways the
fault may be presented to users are the various context-
independent fault manifestations. Context-independent
features, summarized in Figure 5, include displaying the
fault on the same page as the current page (in a “frame”
style where the header, footer, and side menu bars are pre-
served), loading a new page that is visually different from
the normal theme of the web application, wrapping the fault
in a generic or customized human-readable error message,
popups, server-generated error messages (such as HTTP

Feature Description
Same The error is visible within the same page and
Context application (imagine a website with frames);

the title, menu, and/or sidebars stay the same
New A page is loaded that does not look like other
Context pages in the application; examples are blank

pages or server-generated error messages
Generic A human-readable wrapper around an exception,
Error which frequently provides no useful information
Message about the problem
Popup The error resulted or was displayed in a popup
Server The error was a standard server-generated

complaint, such as an HTTP 404 or 500 error
stack A stack trace or other visible part of non-
trace HTML code
Other Text exists on the page indicating there was
Error an error (as opposed to a missing image or
Message other “silent” fault)

Figure 5. Context- and cause-independent fault features.

“404 not found” errors), or displaying a stack trace.
Contextual fault characteristics can highlight possibil-

ities to focus testing on certain parts of the source code.
Context-independent features, by contrast, can be trans-
lated into opportunities to decrease the perceived severity
of faults, regardless of their origin.

A deeper analysis of the human study data [7] reveals
that errors presented with a stack trace were viewed as most
severe, followed by database errors with visible SQL code,
authentication problems, and then error messages in gen-
eral. Cosmetic errors, such as a typographic mistake, that
do not affect the usability of the website were perceived as
having the lowest severity, followed by form errors such as
extra buttons. Although minor faults, such as typos, for-
matting issues, and form field problems are often easier to
trace in the source code, in that there can be few to no busi-
ness logic defects involved with these kinds of faults, find-
ing such trivial errors can actually be potentially more chal-
lenging when using traditional testing approaches in a web
application environment. Consider a situation where a test
suite with oracle output exists for an old version of a web
application. When the application undergoes development,
the HTML output will most likely change, and it becomes
difficult to distinguish between faulty output and harmless
program evolutions, especially with automated tools [6].
By contrast, severe errors that present with a stack trace or
errors messages on the screen are more easily identified,
due to the relative larger difference between expected and
actual output. Our results highlight the benefits of using
even simple, automated testing approaches that search for
error keywords [1] in that they are likely to quickly and re-
liably identify high-severity faults. We return to the issue
of fault causes in Section 5.

Modifying the context-independent features of
consumer-visible faults is an orthogonal approach to test-
ing strategies in the arena of consumer retention. Although
the visual presentation is not the only deciding factor with

0

20

40

60

80

100

120

popup generic

error

message

server

message

other error

message

stack trace

or code on

screen

new

context

same

context

Context-Independent feature

P
e
rc

e
n

ta
g

e
 o

f
fa

u
lt

s
 i
n

 s
e
v
e
ri

ty
 c

a
te

g
o

ry

█ very high

█ high

█ medium-high

█ medium

█ low

Figure 6. Severity distribution as a function of context- and
cause-independent fault characteristics.

respect to consumer-perceived fault severity, various fault
presentations are associated with different severity levels.
When a fault occurs, developers often have the option
of managing the way the fault is presented to the user.
Consider the case of the inability to upload an image; the
set of real-world faults used in the human study includes
thirteen such instances. In every case where the fault
was judged as severe (5 out of 13), the faulty page was
displayed with either a stack trace or a server generated
error message, in a new context (i.e., a webpage with a
different header, footer, sidebar menus, and layout than
the original website template). When the same fault was
judged as medium-high severity (4 out of 13 times) a stack
trace was present, but in half of those pages the context did
not change. When the fault was judged with only medium
severity (the remaining 4 out of 13 times), the context
remained the same, and a stack trace was usually absent.
This example demonstrates how developers can reduce the
perceived severity of such faults by preventing the context
of the page from changing and wrapping the fault in an
error message displayed on the same page.

Figure 6 presents the visual, context-independent
characteristics of the real world faults in our study, bro-
ken into the four fault severity groups. In general, faults
that occur in the same context, as opposed to loading a new
and visually discordant page, are much more likely to be
judged as lower severity. The converse is also true: faults
with new contexts are associated with increasing severity
ratings. Our analysis of the study revealed that the worst
way to present faults to consumers is in the form of a stack
trace; wrapping the fault in an error message was associ-
ated with a lower severity. Server-generated error messages
were also poorly received. Error messages that were dis-
played as popup windows were regarded as the least up-
setting to consumers. Developers should be conscious of
the impact on consumer-perceived severity of various fault
presentations, and choose options such as maintaining the
same context and relying on popups that are associated with

Cause Description SRCC with
high severity

Database An error in the database 0.66
configuration or structure

SQL A buggy SQL query that 0.69
lead to an exception

NULL An empty code or database object 0.69
which lead to an exception

Source An error due to incorrect 0.18
Code logic in the source code
Config Configuration settings 0.68

were inconsistent
Component A third party component was 0.62

incompatible or caused an error
A file was missing, or a recent 0.63
upgrade caused an error

Upgrade
The operating system failed to allocate 0.68

Permission resources or open files
Server Incorrectly configured server 0.68

Figure 7. Common defect causes from the four hundred real-
world faults in the human study. The SRCC column gives the
Spearman correlation between faults having that cause and high
severity (≥ 2.5). An SRCC above 0.5 is considered moderate to
strong correlation [10].

high consumer satisfaction.

5 Fault Causes Related to Severities

In this section, we analyze the causes of defects, inde-
pendent of their visual or use-case context, to associate
faults of varying severities with different components in
the code or environment. Our goal is provide developers
with ways to target web application design and testing to
reduce the frequency of high severity faults by focusing on
the potential causes of defects. In our analysis of the hu-
man study data we identified nine recurring causes of de-
fects, summarized in Figure 7. Recall that all defects in the
study were taken from real-world bug reports filed in bug
databases [7].

Figure 8 shows the fault severity distributions asso-
ciated with the causes from Figure 7. Severe faults are
frequently associated with unhandled NULL objects, miss-
ing files or incorrect upgrades, database issues, and incor-
rect configurations. The lower the severity of a fault, the
more likely it was due to erroneous logic in the application
source code not associated with the database or NULL ob-
jects. These results are consistent with those of the previous
section, in that exceptions that frequently manifest as stack
traces are due to unhandled exceptions, and database ac-
cess problems are associated with displaying SQL code on
the screen. As explained in Section 4, severe faults that are
due to exceptions or configuration issues are often easier
to detect with even a coarse-grained, automated test suite,
because the difference between the expected output and ac-
tual application output is more dramatic.

0

10

20

30

40

50

60

70

config
SQL

permissions

server
NULL

component

database

upgrade

src code

Causes of faults

P
e

rc
e

n
ta

g
e

 o
f

fa
u

lt
s

 i
n

 s
e

v
e

ri
ty

c
a

te
g

o
ry

█ very high

█ high

█ medium-high

█ medium

█ low

▒ average across all faults

Figure 8. Fault severity as a function of underlying defect
causes.

Finding logic errors in program source code poses a
greater challenge, as it is less likely that any individual test
case will exercise any single line of code, and the differ-
ence between the oracle and actual test output may be dif-
ficult to recognize as a fault instead of a harmless program
evolution [6]. Once again, even a simple, naı̈ve test suite
that uses keywords to detect faulty output can be used with
a high return on investment when seeking high severity
faults. Approaches that orthogonally address the preven-
tion of unexpected NULL objects [5], and database testing
rigs [3], and can be used in conjunction with such modest
testing techniques to successfully prevent or flag propor-
tionally more severe faults.

6 Test Case Reduction And Severity

In the previous sections we tied severe faults to different
types of visual stimuli, use cases, and defect causes. Even
a simple test suite which looks for error keywords or large
differences between expected and actual test case output
may thus capture a large percentage of high severity faults.
In this section we present further empirically-backed rec-
ommendations, assuming that an organization has some re-
sources to invest in more rigorous testing approaches, but
still would like to minimize the resources required.

We consider a scenario in which user-session-based
testing, a kind of capture-replay technique that is largely
automatic, is currently implemented as a company’s test-
ing methodology. This approach works by recording user
accesses through the server and replaying them during test-
ing [8, 30]. A user session is an ordered list of user URL
requests made to the server. Although a server needs only
small modifications to log such sessions, this type of test-
ing has the drawback that large volumes of session data
are captured. Replaying all recorded user sessions is often
infeasible, and test suite reduction with user-session-based
testing has been studied extensively [16, 18, 19, 29, 31].

The goal of test suite reduction is to select a subset of all
user sessions to replay that will reveal the largest number
of faults during testing. While the trade offs between fault
detection and test case size have been explored for web ap-
plications, the severity of the faults uncovered by various
reduction techniques has yet to be addressed.

6.1 Reduction — Experimental Setup

To measure the severities uncovered by various test suite re-
duction techniques, we manually seeded 90 faults in three
PHP applications in Figure 9 denoted by an asterisk (an
online store, a forum, and a real estate website). The
faults were equally distributed among the applications and
were seeded according to the methodology of Sprenkle et
al. [31]. One hundred and fifty user sessions were then
collected from volunteers asked to interact with each appli-
cation in a typical manner. We here define a test case to be
all the URLs in one user session, and each test case was run
on a faulty version of a benchmark with one fault injected
at a time. All three web applications had database compo-
nents, the states of which were saved at the beginning of
each user session so that when a test case was replayed, it
operated on the same relative state.

We chose to implement various user-session test suite
reduction strategies explored by Sprenkle et al. [31]: retest-
all, Harrold-Gupta-Soffa, and Concept. The retest-all strat-
egy does not reduce the size of the test suite and serves
as a baseline for fault detection. Harrold-Gupta-Soffa is a
general technique [16] that uses a heuristic which selects
a subset of the original test suite by approximating the op-
timized reduced set (an NP-complete problem). The algo-
rithm chooses test cases from the original test suite one at
a time, always choosing the test case that will cover the
most untouched URLs next. Concept is Sprenkle et al.’s or-
thogonal approach that builds a concept lattice where each
node is a test case that inherits the attributes from all pre-
vious nodes. The lattice therefore constructs a partial or-
dering between all test cases, based on the URLs each test
case covers. The parent nodes of the bottom of the lat-
tice represent the minimal set of test cases that will cover
all URLs using this approach. We adopted two readily-
available tools, concepts [11] and RAISE [12] to imple-
ment the Concept and Harrold-Gupta-Soffa approaches.

Both methodologies need to associate requirements
with each test case. We followed the experimental setup
in [31], taking a test case to be user session composed
of URLs in a specific order, and its requirements to be
the respective URLs each user session exercises. Be-
cause URLs frequently contain form data as name-value
pairs, we follow Sprenkle et al. [28, 31] by examining
the URLs independent of these values. For example,
http://example.com/order.php?sku=12&id=11

and http://example.com/order.php?id=15 are con-
sidered the same URL and therefore the same requirement,
because we ignore all name-value pairs after the ? in the
URL. Conversely, the Openrealty benchmark used the same

Method/ Test Low Med Med High Total
Benchmark Cases -High
retest-all 50 0 3 24 3 30
Prestashop
HGS 8 0 3 24 3 30
Prestashop
Concept 27 0 3 24 3 30
Prestashop
retest-all 50 1 3 1 23 28
Openrealty
HGS 15 1 3 1 20 25
Openrealty
Concept 40 1 3 1 23 28
Openrealty
retest-all 50 5 22 2 1 30
Vanilla
HGS 4 5 22 2 1 30
Vanilla
Concept 9 5 22 2 1 30
Vanilla

Figure 9. Fault severity uncovered via reduced test suites. The
“Method” is either retest-all (the baseline), HGS [16] or Con-
cept [31]. The “Test Cases” column counts the number of test
cases in the reduced suited produced by that methodology (out of
50). The “Low” through “High” columns count the number of
faults exposed in each such severity level. The “Total” column
gives the total number of faults across all severities exposed by
each technique on each benchmark application.

PHP page for almost all requests, and specified actions via
arguments such as do=Preview. For this benchmark we
also considered the value of this action name-value pair
only in mapping the URL to a requirement.

We tested the fault detection ability of each test suite
by cloning each benchmark into 30 versions with one
seeded fault each, and running each test suite on each
cloned version. We collected the faulty output and expected
output for each faulty version of source code by customiz-
ing a diff-like tool to ignore data such as timestamps and
session tokens that would be different between even cor-
rect versions of output. Comparing the HTML output of
web applications in regression testing is a known problem,
due to the inability to distinguish between erroneous output
and harmless program evolutions, and has been addressed
through partially- and fully-automated tools [6]. We use a
customized diff-like comparator to eliminate false posi-
tives and false negatives.

After collecting the faulty and expected versions of
output, we next measure the consumer-perceived fault
severity of each defect. We used the formal model derived
from the user study [7] to accurately predict the severity
between a faulty HTML output and an oracle output by ap-
proximating various surface features of the fault and using
a manually-constructed decision tree to arrive at a severity.

6.2 Reduction — Experimental Results

Figure 9 shows the number of test cases (user sessions) for
each test reduction methodology in our experiment, and the
number of uncovered faults of varying severities. Because
the severity of a fault depends on the concrete manifesta-
tion of the fault in HTML, rather than source code, the same
fault may materialize with different severities on differ-
ent URLs. Therefore, Figure 9 shows the number faults in
each severity category when considering the average sever-
ity rating for any HTML manifestation of a particular fault.

Previous work has shown both the Concept [31] and
Harrold-Gupta-Soffa [16] test suite reduction methodolo-
gies to be highly effective at maintaining the fault expo-
sure proprties of the original retest-all baseline — when all
faults are treated equally. This experiments shows that they
are also effective when fault severity is taken into account.
Reduced test suites were able to match the same number of
exposed faults in cases where the fault were generally of
medium-high (Prestahsop) and medium (Vanilla) severity.
For our benchmark that happened to be seeded with mostly
severe faults (Openrealty), both test suite production ap-
proaches had comparable results to the baseline. Although
this property of effective fault exposure may not generalize
beyond our benchmarks and more experimental work is re-
quired, we believe that test suite reduction of user-session
based test suites is an effective way to maintain high levels
of severe fault exposure while reducing costs.

7 Related Work
The prevalence of failures in web application has been
widely studied. A 2005 survey identified 89% of on-
line customers encounter problems when completing on-
line transactions [15, 25]. User-visible failures are common
in top-performing web applications: about 70% of top-
performing sites are subject to user-visible failures within
the first 15 minutes of testing [32].

A number of preliminary web fault taxonomies have
been proposed. Guo and Sampath identify seven types of
faults as an initial step towards web fault classification [14].
Marchetto et al. validate a web fault taxonomy to be used
towards fault seeding [21], using fault characteristics such
as level in the three-tiered architecture the fault occurred on
or some of the underlying, specific web-based technologies
(such as sessions). In these fault classifications [14, 21]
there is no formal concept or analysis of severity; some cat-
egories of faults may produce more errors that would turn
customers away, but this consideration is not explored. Our
work also divides up faults according to fault localization,
but is able to associate consumer-perceived severities with
different sources of faults.

Fault severity as a metric is considered by Elbaum
et al. [9] in test suite construction, but they provide no
guidelines for measuring fault severity beyond the time
required to locate or correct a fault, damage to persons
or property, or lost business, which are difficult to calcu-

late. Ma and Tian present a defect classification framework
to analyze web errors with respect to reliability improve-
ment [20]. Unlike our approach, they extract information
from web server logs rather than examining browser out-
put. Although they consider defect severity as a classifica-
tion attribute, like Elbaum et al., no guidelines for how to
measure this feature are outlined.

Di Lucca et al. have also explored reduction of user-
session test suites in [19], where they measure coverage of
URLs as well as Built Client Pages, which are dynamically
built pages generated from user input and application state
data. Rather than only considering URLs as coverage crite-
ria, they rely on static and dynamic analysis of the web ap-
plication to generate a reduced test suite smaller than those
of Concept [31] for their benchmarks. We chose to focus on
Concept’s and Harrold-Gupta-Soffa’s [16] reduction tech-
niques because they rely on simple analysis of URLs in col-
lected use cases; in future work we would like to extend
our study to reduction techniques such as Di Lucca et al.
have explored.

8 Conclusion
Formal testing of web applications is frequently a casu-
alty of the extreme resource constraints of their develop-
ment environments [27]. At the same time, web appli-
cations are highly human-centric, and consumer retention
is known to be low [22]. In this paper we analyzed the
results of a study of the consumer-perceived severity of
400 real-world web application faults with the explicit goal
of providing concrete guidelines to increase the perceived
return-on-investment of even naive testing approaches. We
have shown that the distribution of consumer-perceived
fault severities is independent of the type or language of
the application, and it is therefore possible to deliver high
quality software for any use and without constraints on the
underlying technologies used. We have also demonstrated
that, given the same defect in the source code, different vi-
sual presentations of the fault to consumers have different
impacts on their perceived severity. Controlling fault pre-
sentation by opting for pop-ups and error messages over
stack traces and changing page layout is a simple and ef-
fective way to reduce the consumer-perceived severity of
faults. In studying the causes of various types of faults,
we also established the utility of coarse-grained test suites
that only detect relatively large differences in HTML out-
put or rely on error keywords as effective ways of captur-
ing many high severity faults, encouraging all developers
to invest in at least some minimal testing infrastructure. Fi-
nally, we examined the trade offs between the costs of vari-
ous user-session-based test suites for web applications, and
found that reduced test suites were effective at maintain-
ing fault exposure properties across all fault severity levels.
Although web application testing has received a relatively
lukewarm welcome in industry due to the perceived lack
of return on investment within the demanding development
environment, we have shown that by focusing on retain-

ing consumers through the prevention of severe faults, even
simple testing approaches are able to achieve significant
gains in consumer satisfaction.

9 Acknowledgements

This research was supported in part by, but may not reflect
the positions of, National Science Foundation Grants CNS
0716478 and CNS 0905373, Air Force Office of Scien-
tific Research grant FA9550-07-1-0532, and NASA grant
NAS1-02117, and Microsoft Research gifts.

References

[1] M. Benedikt, J. Freire, and P. Godefroid. Veriweb: Auto-
matically testing dynamic web sites. In World Wide Web
Conference, May 2002.

[2] D. Boeth. An analysis of the future of B2B e-commerce.
In http://www.ftc.gov/bc/b2b/comments/
PPRo%20Statement.pdf, September 2009.

[3] M. Y. Chen, E. Kiciman, E. Fratkin, A. Fox, and E. Brewer.
Pinpoint: Problem determination in large, dynamic Internet
services. In International Conference on Dependable Sys-
tems and Networks, pages 595–604, 2002.

[4] ClickZ. B2B e-commerce headed for trillions. In http:
//www.clickz.com/986661, 2002.

[5] K. Dobolyi and W. Weimer. Changing java’s semantics
for handling null pointer exceptions. In International Sym-
posium on Software Reliability Engineering, pages 47–56,
Nov. 2008.

[6] K. Dobolyi and W. Weimer. Harnessing web-based appli-
cation similarities to aid in regression testing. ISSRE ’09:
Proceedings of the 20th International Symposium on Soft-
ware Reliability Engineering (ISSRE’09), November 2009.

[7] K. Dobolyi and W. Weimer. Modeling consumer-perceived
web application fault severities for testing. Technical report,
University of Virginia, 2009.

[8] S. Elbaum, S. Karre, and G. Rothermel. Improving web
application testing with user session data. In International
Conference on Software Engineering, pages 49–59, 2003.

[9] S. Elbaum, A. Malishevsky, and G. Rothermel. Incorpo-
rating varying test costs and fault severities into test case
prioritization. In International Conference on Software En-
gineering, pages 329–338, 2001.

[10] L. L. Giventer. Statistical Analysis for Public Administra-
tion. Jones and Bartlett Publishers, 2007.

[11] Google Code. Colibri-java. In http://code.google.
com/p/colibri-java/, October 2009.

[12] Google Code. raise: Reduce and prioritize suites. In http:
//code.google.com/p/raise/, October 2009.

[13] K. Grannis, E. Davis, and T. Sullivan. Online sales to climb
despite struggling economy according to Shop.org/Forrester
research study. In http://www.shop.org/c/
journal articles/view article content?
groupId=1&articleId=702&version=1.0,
September 2009.

[14] Y. Guo and S. Sampath. Web application fault classification
- an exploratory study. In Intern. Symp. on Empirical Softw.
Engin. and Measurement, pages 303–305, 2008.

[15] Harris Interactive. A study about online transactions, pre-
pared for TeaLeaf Technology Inc., October 2005.

[16] M. J. Harrold, R. Gupta, and M. L. Soffa. A methodology
for controlling the size of a test suite. ACM Trans. Softw.
Eng. Methodol., 2(3):270–285, 1993.

[17] Internet World Stats. World internet usage statistics
news and world population stats. In http://www.
internetworldstats.com/stats.htm, Sep 2009.

[18] S. Karre. Leveraging user-session data to support web ap-
plication testing. IEEE Trans. Softw. Eng., 31(3):187–202,
2005.

[19] G. D. Lucca, A. R. Fasolino, and P. Tramontana. A tech-
nique for reducing user session data sets in web application
testing. Web Site Evolution, IEEE International Workshop
on, 0:7–13, 2006.

[20] L. Ma and J. Tian. Web error classification and analysis
for reliability improvement. J. Syst. Softw., 80(6):795–804,
2007.

[21] A. Marchetto, F. Ricca, and P. Tonella. Empirical validation
of a web fault taxonomy and its usage for fault seeding. In
IEEE International Workshop on Web Site Evolution, pages
31–38, Oct. 2007.

[22] J. Offutt. Quality attributes of web software applications.
IEEE Software, 19(2):25–32, Mar/Apr 2002.

[23] T. J. Ostrand and E. J. Weyuker. The distribution of faults in
a large industrial software system. In International sympo-
sium on software testing and analysis, pages 55–64, 2002.

[24] T. J. Ostrand, E. J. Weyuker, and R. M. Bell. Where the bugs
are. In ISSTA ’04: Proceedings of the 2004 ACM SIGSOFT
international symposium on software testing and analysis,
pages 86–96, 2004.

[25] S. Pertet and P. Narasimhan. Causes of failure in web appli-
cations. Technical report, Carnegie Mellon University Par-
allel Data Lab, December 2005.

[26] R. Pressman. What a tangled web we weave [web engineer-
ing]. IEEE Software, 17(1):18–21, January/February 2000.

[27] F. Ricca and P. Tonella. Testing processes of web applica-
tions. Ann. Softw. Eng., 14(1-4):93–114, 2002.

[28] S. Sampath, V. Mihaylov, A. Souter, and L. Pollock. A scal-
able approach to user-session based testing of web applica-
tions through concept analysis. In International Conference
on Automated Software Engineering, pages 132–141, 2004.

[29] S. Sprenkle and E. Gibson. Applying concept analysis to
user-session-based testing of web applications. IEEE Trans.
Softw. Eng., 33(10):643–658, 2007.

[30] S. Sprenkle, E. Gibson, S. Sampath, and L. Pollock. Auto-
mated replay and failure detection for web applications. In
Automated Software Engineering, pages 253–262, 2005.

[31] S. Sprenkle, S. Sampath, E. Gibson, L. Pollock, and
A. Souter. An empirical comparison of test suite reduc-
tion techniques for user-session-based testing of web appli-
cations. In International Conference on Software Mainte-
nance, pages 587–596, 2005.

[32] TeaLeaf Technology Inc. Open for business? Real availabil-
ity is focused on users, not applications. October 2003.

