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Abstract

Formal specifications can help with program testing, optimization, refactoring, doc-

umentation, and, most importantly, debugging and repair. Unfortunately, formal

specifications are difficult to write manually and techniques that infer specifications

automatically suffer from 90–99% false positive rates. Consequently, neither option

is currently practiced for most software development projects.

We present a novel technique that automatically infers partial correctness spec-

ifications with a very low false positive rate. We claim that existing specification

miners yield false positives because they assign equal weight to all aspects of program

behavior. For example, we grant less credence to duplicate code, infrequently-tested

code, and code that has been changed often or recently. By using additional informa-

tion from the software engineering process, we are able to dramatically reduce this

rate.

We evaluate our technique in two ways: as a preprocessing step for an existing

specification miner and as part of a novel specification inference algorithm. Our tech-

nique identifies which traces are most indicative of program behavior, which allows

off-the-shelf mining techniques to learn the same number of specifications using 60%

of their original input. This results in many fewer false positives as compared to state

of the art techniques, while still finding useful specifications on over 800,000 lines of
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ii ABSTRACT

code. When minimizing false alarms, we obtain a 5% false positive rate, an order-

of-magnitude improvement over previous work. When combined with bug-finding

software, our mined specifications locate over 250 policy violations. To the best of

our knowledge, this is the first specification miner with such a low false positive rate,

and thus a low associated burden of manual inspection.
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Chapter 1

Introduction

Writing the code is but one step in creating a software system. A software system’s

lifetime and budget is dominated by a number of processes that go well beyond code

creation. Up to 90% of the cost of a software project is devoted to modifying existing

code, detecting and correcting errors, and generally evolving a code base [52]. These

activities are major parts of system maintenance [51]. The quality of a program’s

documentation strongly influences a programmer’s ability to accurately evolve and

modify existing code, because understanding correct software behavior is central to

maintaining, changing, and correcting code. It is therefore unsurprising that up to

60% of maintenance time is spent studying existing software (e.g., [49, p.475], [50,

p.35]). Incomplete documentation and incomplete understanding are thus key main-

tenance difficulties [19]. Beyond being expensive and time-consuming, these processes

are critically important in the current software-deployment landscape: deployed pro-

grams with incorrect behavior cost billions of dollars each year [48]. Correctly modi-

fying, maintaining, documenting and understanding code therefore remain important

software engineering concerns.
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2 INTRODUCTION

Most of these important activities can be aided by the presence of formal specifica-

tions of one form or another. Formal specifications can help with program testing [7],

optimization [43], refactoring [38], documentation [9], and repair [58]. In addition,

there are many successful tools that can assist with bug detection and correction,

such as SLAM [6], BLAST [35], MOPS [13], SPLINT [25], and ESP [18] projects.

However, these tools typically depend on machine-readable specifications of program

behavior (e.g., [45]).

“Specification” has different meanings to different practitioners. For example,

a specification may describe legal sequences of function calls, such as is found in

an API, or temporal properties to which the program must remain faithful such as

might be suitable input to a model checker [6, 35, 13]. For instance, a program that

open()s an important resource must always eventually close() it. On the other hand,

a specification may consist of a prose document that outlines all of the correct and

required behavior for a given piece of software. Alternatively, a specification may be

written in a formal language such as Z or SPARK ADA [1, 12], and describe invariants

that hold at various program points (such as function pre- or post- conditions or loop

invariants). Such a specification can be used to prove various properties about a given

program.

Very generally, a program specification is a description of correct program behavior.

Automatic bug-finding tools currently require them, because it is difficult for a tool

to tell when a program is behaving incorrectly without a sound description of what

correct behavior entails. Put simply, without a precise definition of correct program

behavior, these automatic and pseudo-automatic tools cannot detect or correct errors

or deviations in program execution. In this thesis, we follow the terminology of

Ammons et al. and use “specifications” to refer to formal, machine-readable, partial-
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correctness, temporal-safety properties of programs, and often specifically to those

properties that describe the correct manipulation of an important resource or API. [5]

We use “policy” and “specification” interchangeably.

Although low-level program annotations, such as those describing array bounds,

are becoming more and more prevalent [17], the formal specifications we refer to are

rare. Specifications are very difficult for humans to manually generate or debug and

verify without tool support. Chen et al. studied the setuid API in Unix-like sys-

tems [14]. They developed a method for automatically and somewhat laboriously

constructing a formal model for the API for the access control system in Unix. They

discovered several key facts about describing such an API. First, if the goal is to

provide a complete description of correct and incorrect behavior of a system, a hu-

man inspection of the system is largely insufficient. Second, once the formal model

of the system had been completed, the authors discovered several security vulnera-

bilities in various Unix-like operating systems and notable omissions or inaccuracies

in the documentation of the setuid interface. Relatedly, Ammons et al. studied the

specifications emitted by an algorithmic tool, attempting to gauge their correctness

by hand. This problem was so difficult that they developed a separate tool for the

purpose of debugging specifications, claiming, “ . . . writing a correct specification is

difficult, just as writing a correct program is difficult. Thus, just as we need methods

for debugging programs, we need methods for debugging specifications.” [5] We can

conclude that this type of formal specification is difficult for humans to construct,

particularly unaided, and particularly post-facto, and that incorrect specifications are

difficult for humans to debug and modify.

Specification mining projects attempt to address these problems by inferring spec-

ifications (both simple temporal properties and larger, more complete finite state
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machines) from program source code or execution traces [3, 4, 23, 29, 54, 62, 64].

Generally, these existing tools take program source code or traces that describe pro-

gram behavior as input and output either a single, large specification that delineates

acceptable program behavior or a list of smaller specifications that the miner believes

are likely to apply to the program in question.

If a miner produces a list of candidate specifications, we can distinguish between

true and false specifications. In this thesis, we follow the terminology of Weimer et

al. [61] and say that a true specification describes required program behavior: if a

program trace violates this specification, a human programmer or developer on the

project would be correct in describing the behavior as an error. A false specification

describes program behavior that is not required for correctness. That is, a program

trace could violate a false specification and still be considered correct. A false candi-

date specification may describe legal program behavior, but does not describe required

program behavior. For the purposes of this discussion, the distinction between true

and false specifications is that the former describes required program behavior and

the latter does not.

Modern specification mining techniques typically either produce imprecise specifi-

cations that do not describe the entirety of allowed or desired behavior [62, 5] or suffer

from very high false positive rates of 90–99% [23, 61]. That is, a very large proportion

of candidate specifications produced by these techniques are not true program spec-

ifications. Instead, they may describe patterns that appear frequently in the code,

such as printf being commonly followed by printf, or correct but not required code

usage, such as requiring that every hasnext call be followed by a getnext call. More-

over, some miners require that every inferred policy be inspected by a programmer for

correctness. [5]. In any case, much of modern specification mining typically requires
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substantial programmer intervention, either to guide the specification inference it-

self [4, 3] or to separate valid learned specifications from invalid ones. Hence, current

techniques are insufficiently precise for automated use or efficient industrial practice.

The task of specification mining can be compared to learning the rules of English

grammar by reading essays written by high school students by miner looking at how

words or punctuation are combined and extracting general rules about their usage.

Similarly, specification miners examine how functions are called, and in what order,

to determine general rules that apply across the program. A miner that looks at

essays to determine the rules of English might take into consideration the grades the

different papers received: papers with high marks are more likely to exhibit correct

grammar than papers that received failing marks. As not all high school essays are of

equivalent quality, not all code is equally likely to be correct. Current techniques in

specification mining ignore the potential differences in code quality across a software

project.

We propose to tackle the problem of false positives in specification mining by

focusing on the essays of passing students and being skeptical of the essays of failing

students. We claim that existing miners have high false positive rates in large part

because they treat all code equally, even though not all code is of equal quality. For

example, consider an execution trace through a recently modified, rarely-executed

piece of code that was copied-and-pasted by an inexperienced developer. We argue

that such a trace is a poor guide to correct behavior when compared with well-tested,

infrequently-changed, and commonly-executed traces.

One type of miner for temporal policies considers examples of program behavior

described by sequences of legal events and attempts to extract finite state machines

of varied complexity. The problem of mining temporal safety policies can be consid-
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ered equivalent to learning a regular language based on finitely-many strings in the

language. This problem is NP-complete in general [4], as it is impossible to learn

regular languages in the limit [30, Theorem 1.8] based on finitely many examples.

Consequently, existing miners use heuristics to decide what specifications are likely

valid. Our algorithm is no different in that regard: we infer temporal safety properties

of the form “b must follow a.” Our principal insight is that our heuristics are based

on information gleaned from the software engineering process.

The formal thesis statement of this work is:

We can use measurements of the trustworthiness of source code to mine

specifications with few false positives.

Essentially, we think that a major problem with current specification miners is that

they do not effectively distinguish between good and bad code. We hypothesize that

we can measure the “trustworthiness” of code. We further hypothesize that we can

effectively use those measurements to mine useful specifications from static program

traces with a lower rate of false positives than is found in other, similar miners.

We thus propose a new automatic specification miner that uses artifacts from

software engineering processes to capture the trustworthiness of its input traces. The

main contributions of this thesis are:

• A set of source-level features related to software engineering processes that

captures the trustworthiness of code for specification mining. We analyze the

relative predictive power of each of these features and their relationship to one

another, establishing that the features are largely independently useful metrics

of code quality.
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• Empirical evidence that our notions of trustworthy code serve as a reasonable

basis for evaluating the trustworthiness of traces. We provide a characterization

for such traces and show that off-the-shelf specification miners can learn the

same specifications using only 60% of traces, as long as the traces conform to

our notion of trustworthiness.

• A novel automatic mining technique that uses our trust-capturing features to

learn temporal safety specifications with few false positives in practice. We eval-

uate it on over 800,000 lines of code and explicitly compare it to two previous

approaches. Our basic mining technique learns specifications that locate more

safety-policy violations than previous miners (740 vs. 426) while presenting far

fewer false positive specifications (107 vs. 567). When focused on precision,

our technique obtains a low 5% false positive rate, an order-of-magnitude im-

provement over previous work, while still finding specifications that locate 265

violations. To our knowledge, this is the first specification miner that considers

statically generated program traces and produces multiple candidate specifica-

tions and has a false positive rate under 90%.

Chapter 2 describes temporal safety specifications and highlights their uses, and

then provides a more complete overview of specification mining. Chapter 3 presents

an example that motivates our insights about trustworthiness and specification min-

ing. Chapter 4 describes our approach to specification mining, including the code

trustworthiness metrics used (Section 4.1). Chapter 5 presents experiments support-

ing our claims and evaluating the effectiveness of our miner. We discuss related work

in Chapter 6 and future work and conclusions in Chapter 7.



Chapter 2

Mining Temporal Safety Specifications

In this chapter, we present background on machine-readable two-state partial-correctness

temporal safety specifications and how to mine them.

2.1 Temporal Safety Specifications

Specifications can come in many forms: English prose documents, first-order logic,

or lower-level annotations such as array bounds. One particular type of specification

takes the form of a machine-readable finite-state machine that encodes valid sequences

of events relating to resources that a program manipulates during execution. Typ-

ically, an event is a function call that can take place as a program executes. For

example, one event may represent reading untrusted data over the network, another

may represent sanitizing it, and a third may represent a database query. Figure 2.2

shows such an example specification for avoiding SQL injection attacks [44], based on

the code in Figure 2.1.

Typically, each important resource, such as a lock, file handle, or socket, is tracked

8
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void bad(Socket s, Conn c) {
string message = s.read ();
string query = "select * " +

"from emp where name = " +
message;

c.submit(query);
s.write("result = " +

c.result ());
}

void good(Socket s, Conn c) {
string message = s.read ();
c.prepare("select * from "

+ " emp where name = ?",
message );

c.exec ();
s.write("result = " +

c.result ());
}

Figure 2.1: Pseudocode for an example internet service. The bad method passes
untrusted data to the database; good works correctly. Important events are italicized.

  

s0 s1
read

err

submit        

s2s2

s3

        prepare

sanitize
s4

submit

      exec

Figure 2.2: Example specification for Figure 1.

separately, with its own finite state machine [20]. At initialization, each finite state

machine starts in its start state. Observed program events on a particular object can

alter the state of the object’s machine. A program conforms to a specification if and

only if it terminates with all of its state machines in an accepting state. Otherwise, the

program violates the specification, and there is be an error in either the source code,

trace collection, or in the specification itself. Problem diagnosis typically requires

programmer intervention.

This type of specification can describe properties such as locking [16], resource

leaks [61], security [44], high-level invariants [27] and memory safety [36], and more

specialized properties such as the correct handling of setuid [14] (and, more generally,

other system calls) or asynchronous I/O request packets [6]. Moreover, these types

of specifications can be used by many existing defect-finding tools (e.g., [6, 16, 18,
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27]). Indeed, all existing bug-finders require an implicit or explicit notion of correct

program behavior. These notions can be very broad, such as “a C program should

not dereference a null pointer,” or program specific, or may even come as implicit

assumptions of the tool (such as with SPLINT [25], which checks a specific set of

security properties). There are many particular defect-finding tools that can take as

input the FSM specifications we are discussing here, such as [6, 16, 27].

The simplest and most common type of temporal specification is a two-state fi-

nite state machine [23, 61]. Such two-state specifications require that event a must

always be followed by event b. This corresponds to the regular expression (ab)∗, and

are written 〈a,b〉. Such specifications describe a particular aspect of correct program

behavior [42], typically describing how to manipulate certain resources and interfaces.

For example, a specification in this form can describe resource allocation or the cor-

rect restoration of invariants. Examples include 〈open,close〉, 〈malloc,free〉, and

〈lock,unlock〉. In order to be considered error-free, code described by such specifica-

tions must always adhere to them (unlike certain specifications which may describe

allowable but not required behavior). These properties are prevalent in practice.

We focus in this work on these simple specifications, called partial-correctness

temporal safety properties1 , or temporal properties, for short. While the example

in Figure 2.2 shows a multi-state finite state machine, we focus on these simpler, two-

state properties. These properties are very similar to those expressed in the above

example, in that they describe legal sequences of events on a given resource; they differ

1The use of the term correctness may be misleading in this context. We do not imply that
programs that adhere to these specifications are necessarily correct. Many properties required for
correct program behavior can not be expressed using this type of temporal property. Moreover, it is
impossible to claim that a program is correct simply because it adheres to a specification. Rather, a
program that does not violate such a property is known not to contain a very specific type of error,
usually in resource handling.
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only in that they are simpler and conform to a particular pattern. More complicated

patterns are certainly possible, even in the field of specification mining [64].

We choose to focus on two-state temporal properties because they are simple but

still sufficiently descriptive to be useful in the task of bug-finding [61], and because the

problem of learning specifications, which reduces to learning a finite state machine for

a regular language based on finitely many examples, is NP-complete [4]. Moreover,

restricting attention to a single two-state pattern yields a very large potential state

space: a program trace with n unique events has n2 possible event pairs, and thus n2

possible candidate specifications.

These partial correctness specifications are distinct from and complementary to

full formal behavior specifications.

2.2 Specification Mining

Specification mining is the task of constructing a formal specification from examples

of a program’s behavior, or analysis of its source code [4], or both [62]. Such a task

takes as input a set of traces of program behavior. A trace is a sequence of events with

associated information, such as data values or similar context. Most commonly, traces

consist of sequences of function calls. A specification miner examines such traces and

produces zero or more candidate specifications, which must then be verified by a

human.

Most existing specification miners for specifications describable by a finite state

machine fall into two categories, distinguished by the type and size of the specifica-

tions they produce. Some produce a single, full-fledged finite automata policy with

many states [3, 4, 62], such as we saw in Figure 2.2. Others produce many small
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automata [23, 29, 61, 64], typically of a fixed form.

We focus on the latter, because large automata are much more difficult to verify

or debug [5], and previous work shows that two-state specifications are still useful in

bug-finding [61]. Even when attention is restricted to two-state specifications, mining

remains difficult [29].

Specification miners are highly dependent on their input traces. Traces of pro-

gram behavior can either be statically generated — collected from the source code

(e.g., [23]) — or acquired dynamically from instrumented executions on indicative

workloads (e.g., [62]). Static traces can provide a complete characterization of pro-

gram behavior. However, since there are potentially infinite possible paths through a

program, only a subset of all static traces can be considered. Moreover, static traces

provide an imprecise characterization of possible program behavior because exact pro-

gram behavior is impossible to prove statically. Dynamic traces are potentially more

accurate, because they only describe possible program behavior. However, dynamic

traces are particularly sensitive to workload selection and may omit potentially rel-

evant information by failing to characterize all possible types of program behavior.

We focus attention on mining from statically generated traces.

A canonical example of this type of specification mining is described by Engler et

al., who note that programmer errors can be inferred by assuming the programmer is

usually correct [23]. That is, common behavior implies correct behavior (uncommon

behavior may represent a policy violation; this principle underlies modern intrusion

detection systems e.g., [28]). Engler et al.’s ECC miner takes as input a set of program

traces. Using these traces, the miner counts the number of times a and b appear

together in order and the number of times that event a appears without event b. The

miner uses the z -statistic to rank the likelihood that the correlation is deliberate on the
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part of the programmer. Their miner presents a list of candidate specifications, ranked

in order of their statistical likelihood. A human programmer must then evaluate the

list to sort the true specifications from the erroneous ones. Erroneous specifications

are candidates on the output list that do not describe required program behavior

(that is, a program trace can violate an erroneous specification and still be considered

error-free). We call such candidates false positives. Without human guidance (e.g.,

without lists of important functions to focus on [23]), this technique is prone to a

very high rate of false positives. On one million lines of Java code, only 13 of 2808

positively-ranked specifications generated by ECC were valide: a 99.5% false positive

rate [61].

This example highlights a serious shortfall of previous mining techniques. Namely,

it is not the case that common behavior always implies either correct or required be-

havior. There are two reasons for this. First, source code contains errors in the

form of policy violations. The code does not provide an inviolable authority on what

constitutes correct behavior. Second, some pairs of events very commonly appear

together, but do not encode required program behavior. This class of candidates in-

cludes common red herrings such as 〈print,print〉, or 〈hasnext,getnext〉. A miner

needs to distinguish correct from incorrect behavior and common from required be-

havior when evaluating specification candidates or else its output will be riddled with

false positives.

Previous work observed that programmers often make mistakes in rarely-tested

error handling code [61]. Tracking a single bit of information per trace — whether

that trace corresponded to a program error or not — improved the mining accuracy

dramatically, by an order of magnitude. Weimer et al. also included a software en-

gineering consideration, restricting attention to specifications in which the events a
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and b came from the same package or library. They assumed that independent li-

braries, potentially written by separate developers, are unlikely to depend on each

other for correctness at the API level. These insights reduced the number of can-

didates presented to the programmer by a large factor. On the same million lines

of Java code, the WN miner generated only 649 candidate specifications, of which 69

were real, for an 89% false positive rate. However, this rate is still too high to be

considered automatic, because before being used, the candidate specifications must

still be hand-validated. This thesis builds on this previous work by building a miner

that operates on statically generated traces and outputs a candidate set of likely two-

state temporal properties. We improve the process by incorporating a large amount

of additional information from the software engineering process in the trace analysis.



Chapter 3

Motivating Example

In this chapter, we motivate our technique by presenting two candidate specifications

and describing various differences between the code from which they were gathered.

The purpose of this example is to establish that there may exist objective measure-

ments of code quality that can help us distinguish between true and false positive

candidate specifications. We do this by examining the code in which the candidate

specification is followed and evaluating its trustworthiness. For the purposes of this

example, we present one true specification and one false specification that a previ-

ously implemented miner presented to the programmer as specification candidates.

We then analyze the traces through the code in which each specification appears.

Our goal is to demonstrate there are measurements that we may perform on the code

that could help us distinguish the valid specification from the invalid candidate.

The example specifications were mined by Engler’s ECC technique [23] from Hiber-

nate, an open source Java project that provides object persistence. This benchmark

consists of 57,000 lines of code. We generated and analyzed a total of 12,894 traces

from the source code by generating a maximum of 10 traces per method and using

15
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1 Hibernate.cirrus.hibernate.SessionFactory beginTransaction ()
2 Hibernate.cirrus.hibernate.Session close()

Figure 3.1: A valid specification for Hibernate

1 Hibernate.src.net.sf.hibernate.SessionFactory openSession ()
2 java.util.Collection iterator ()

Figure 3.2: A specification for Hibernate

symbolic execution to rule out infeasible paths.

Consider two candidate specifications mined by ECC. The first, a valid specifica-

tion, is shown in Figure 3.1. This specification represents a portion of the finite state

machine that describes appropriate usage of Hibernate’s Session API. This API is

central to the software project in question and is thus covered fairly extensively in

the Hibernate documentation. This candidate is a valid specification in that, if a

program trace violates it (beginning a transaction by opening a session and failing

to close it), the trace contains an error. In contrast, consider the second candidate

specification, presented by Engler’s technique, shown in Figure 3.2. A cursory in-

spection by the programmer quickly identifies this specification as invalid: program

traces may obviously violate this “specification” and still be considered correct by a

Metric Valid Specification Invalid Specification

Number of Traces 250 14
Average Path length 21 28
Max Path Frequency 85.4% 8.9%
Average Path Frequency 10.1% 0.07%
Max Path Readability 0.99440 0.00002
Average Path Density 20.35 56.63
Average Revision 1304 3812

Figure 3.3: Summary of selected features of the example specifications’ code traces.
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knowledgeable developer of the system.

These examples are particularly extreme, and as such they are easy to classify as

valid and invalid, respectively, without additional knowledge of the program. How-

ever, a more detailed comparison of the specifications, and the code in which they

appear, is also instructive. Figure 3.3 displays a summary of several such measure-

ments. To find these numbers, we separated the complete set of traces that adhere to

each of our candidate specifications. We call the set of traces that contain the true

specification the “valid” traces and the set of traces that follow the false specification

the “invalid traces”. We then calculated various metrics for each set of traces.

For example, the valid specification appears in 250 traces, while the invalid spec-

ification only appears in 14, out of a total of 12,894 traces generated for Hibernate.

Moreover, every one of the “invalid” traces appears in testing code — implying,

perhaps, that this code combination is not run frequently in the course of actually

exercising the Hibernate API. We use a research tool [11] to statically predict the

likely dynamic run-time frequency with which this path is exercised. This tool exam-

ines a path and uses a set of source-level features to predict which proportion of the

time this path will likely be executed on an indicative workload – these numbers are

percentages (of execution time) expressed between 0 and 100. The path frequency

numbers for the traces under consideration support our intuition. The “valid” traces

have a maximum statically predicted “path frequency” of 85% — these specifications

are sometimes found on frequently run code. In contrast, the maximum statically

predicted frequency for the “invalid” traces is less than 10%. No path on which the

invalid specification is observed is predicted to run more than 10% of the time. We

can conclude that the specification followed on frequently executed code is more likely

to be correct, or even required.
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A manual inspection of the invalid traces demonstrates that they are, generally,

long and complicated. In fact, their average length is 28 events, almost three times

the average length of traces in Hibernate overall. This suggests that the code in

question is convoluted and not very readable. Previous work defines a “readability”

metric that can describe sections of code. Readability numbers are based on a human

study involving 120 participants and range from 0 to 1.0. A readability rank of 0 cor-

responds to “least readable”, and 1 corresponds to “most readable” in the judgment

of the human respondents. Buse et al. found a natural cutoff of approximately 0.6

that separates “readable” from “unreadable” code. This judgement correlates with

bug density in source code. For further examples and explanations, see [10]. We

hypothesize that unreadable code is similarly correlated with API policy violations,

or that readable code is correlated with adherence to the API. This intuition plays

out in this example when we measure the readability of the code from which our

example specifications are mined. The maximum readability of any of the invalid

paths is 0.0000232. This implies that the code on which our invalid specification

is observed all exhibit very low predicted readability. The maximum readability of

the valid traces is 0.962988, a dramatic counterpoint. These numbers support the

claim that path readability may indeed correlate with the likelihood that an observed

candidate specification is valid.

We can also measure how far along in the path-generation process we have to go

to find a set of traces. We call this metric “path density”, and it corresponds to

how many acyclic traces will be statically generated in a breadth-first-traversal of a

program, function, or type declaration before a given trace appears. Here, too, the

candidate specifications show a marked difference: we need to emit many more traces

before arriving at the “invalid” specification traces than we do to generate the “valid”
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traces. These measurements perhaps imply that these traces do not encompass the

programmer’s conception of the code’s primary functionality.

Other artifacts from the software engineering process can contribute useful mea-

surements to our analysis. For example, this project is stored and managed in an

SVN code repository. Code churn measures how recently or frequently code has been

changed. We can measure code churn by inspecting source control histories and de-

termining when a change to line of code or a program trace was last committed, how

many revisions have changed this particular program trace, etc. Previous research

indicates that churn correlates strongly with errors or policy violations in code [47].

Measurements of churn on our valid and invalid policy traces adhere to this intuition.

Our valid traces were last changed, on average, much earlier in the development pro-

cess (revision 1304) than the invalid traces were (revision 3812). The valid traces

have been stable for a longer period of time. Perhaps, as previous research indicates,

the code that is more recently changed is less trustworthy or more prone to errors,

and more likely to adhere to or contain true specifications.

These examples are instructive because they show that there are many features

of code paths that seem to correlate with whether or not specifications found along

those paths are likely to be true or false positives. This example shows several such

metrics and motivates their use in the mining process. We can imagine collecting

these measurements for all of our input traces and using them to guide a specification

miner. Such a miner could look at the code that both adheres to and violates a can-

didate specification under consideration and use these metrics to inform its eventual

judgement on its validity. However, they also motivate several further questions: how

do we combine these features into a predictive model? Is average revision of last

change more or less important than the maximum readability of the traces? Which
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other features extracted from software engineering artifacts contribute to the predic-

tive power of such a model? How do the features correlate with one another, and

are they equally predictive across different software projects? We will explore the

application of these intuitions and an implementation of such a predictive model in

the succeeding chapters.



Chapter 4

Our Approach: Code Trustworthiness

In the previous chapter, we presented an example to motivate our claim that there

are many features of source code that can help us distinguish between true and false

candidate specifications. These features can be derived directly from the source code,

or can come from alternative software engineering artifacts. Essentially, however, we

hypothesize that we can use these features to evaluate the likelihood that a given

piece of code contains or adheres to project-specific temporal properties. We develop

these intuitions in this chapter.

Previous approaches to specification mining have implicitly assumed that all exe-

cution traces are equally indicative of correct program behavior, that is, that all traces

should be trusted equally. Thus, the appearance of a potential candidate specification

in one trace is just as important as its absence in another trace when the frequency of

a given pair is being calculated. However, this assumption does not always hold. Not

all code is equally likely to be correct, and thus not all code is equally likely to adhere

to program specifications. A particular execution trace may have been written by

an inexperienced programmer who is unfamiliar with the underlying program API.

21
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It may have been recently changed, and thus more likely to contain an error. It may

not have been well-tested. Essentially, not all code is of the same quality, and we

should consider this fact when calculating the probability that a specification pair is

valid. In other words, not all event pairs found in traces should be weighted equally

when determining candidate specifications.

We call code trustworthy if it is unlikely to exhibit API policy violations. Previous

work hints at this idea by checking software engineering constraints about module

packaging and error handling; we extend it here by introducing multiple notions of

trust as well as by using non-binary notions of trust.

We hypothesize that code is most trustworthy when it has been written by ex-

perienced programmers who are familiar with the project at hand, when it has been

well-tested, and when it has been mindfully written (e.g., rather than copied-and-

pasted). Previous work has found more errors in recently-changed code [47], unread-

able code [10] and rarely-tested code [61]. Such information can be collected from a

program’s source code and version control history. By augmenting the trace language

to include information from the software engineering process, we can evaluate the

trustworthiness of every trace that supports or disputes the veracity of a candidate

specification. We can thus more accurately evaluate the likelihood that it is valid.

We present a new specification miner that works in three stages:

1. Statically estimate the trustworthiness of each code fragment.

2. Lift that judgment to traces by considering the code visited along a trace.

3. Weight the contribution of each trace by its trustworthiness when counting event

frequencies for specification mining.



4.1. Trustworthiness Metrics 23

Section 4.1 describes the set of features we have chosen to approximate the “trust-

worthiness” of code. Section 4.2 describes our mining algorithm in more detail.

4.1 Trustworthiness Metrics

Our goal is to automatically distinguish between code that is likely to adhere to pro-

gram specifications and code that is not. Our specification miner thus uses a number

of metrics to approximate the trustworthiness of code. We only consider metrics that

can be automatically computed using commonly-available software engineering arti-

facts, such as the source code itself or version control information. In the interest of

automation, we do not consider features that require manual annotation or human

guidance.

We use the following metrics:

Code Churn. Previous work has shown that frequently modified code is less

likely to be correct [47]; changing the code to fix one defect often introduces another.

We hypothesize that so-called churned code is less likely to adhere to specifications.

Using version control information, we measure the time between the current revision

and the last revision for each line of code in wall clock hours. Similarly, we measure

the total number of revisions to each line. These measurements give us an idea both

of how long it has been since the code was last changed as well as how “churned” the

code is overall. We hypothesize that code with low churn is more likely to adhere to

required temporal properties.

Author Rank. We hypothesize that some developers have a better understand-

ing of the implicit specifications for a project than others. A senior developer who

has performed many edits may be more familiar with the code base and may remem-
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ber more of the program’s invariants than a developer recently added to the group.

Source control repositories track the author of each change. The rank of an author is

the proportion of all changes to the repository that were committed by that author.

We measure the rank of the last author to touch each line of code. This is not a

standard measurement of author rank; we developed it in an effort to automatically

measure author knowledge (without human annotation). We hypothesize that code

modified by authors with a high author rank is more likely to adhere to required

temporal properties.

Copy-Paste Development. We hypothesize that duplicated code is more error-

prone because it has not been specialized to its new context and because patches to

the original may not have propagated to the duplicate. We further hypothesize that

duplicated code does not represent an independent correctness argument on the part

of the developer, and thus should not be treated as such in specification mining. For

example, if printf follows iter in 10 duplicated code fragments, it is not 10 times as

likely that 〈iter,printf〉 is a real specification. We measure repetition using the open-

source PMD tool-kit’s copy-paste detector, which is based on the Karp-Rabin string

matching algorithm [37]. We hypothesize that code that demonstrates a large amount

of copy-paste development is less likely to adhere to required temporal properties.

Code Readability. We measure code readability using software readability met-

ric, which is based on textual source code features and agrees with human annota-

tors [10]. Buse et al. conducted a human study in which 120 subjects rated the

“readability” of various code snippets, and then trained a linear model to predict

readability based on various source-level features. Readability measures range from

0 to 1.0, with 1.0 meaning “most readable”. A cutoff of approximately 0.6 separates

unreadable from readable code. The work shows that more readable code is less likely
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to contain errors [10]. We hypothesize that more readable code is also more likely to

adhere to required temporal properties.

Path Feasibility. Infeasible paths are an artifact of the static path enumer-

ation process that can create input for specification miners. We claim that these

infeasible (impossible) paths are unlikely to encode programmer intentions. Previ-

ous work has argued that it is always helpful to have more traces, even incorrect

ones [59]; our experiments suggest that quality is more important than quantity (see

Section 5.3). Merely excluding infeasible paths from miner input thus confers some

benefit. However, we further hypothesize that infeasible paths suggest pairs that are

not specifications. If the programmer has made it impossible for b to follow a along

a path, 〈a,b〉 is unlikely to be required. We measure the feasibility of a path using

symbolic execution; a path is infeasible if an external theorem prover (in our case,

Simplify [21]) reports that its symbolic branch guards are inconsistent. We hypothe-

size that feasible code paths are more likely to contain required temporal properties,

and that infeasible paths are likely to contain false properties.

Path Frequency. We theorize that paths that are frequently executed by in-

dicative workloads and testcases are more likely to contain correct behavior. This

may be true for two reasons. First, common code paths are more likely to have been

properly tested by developers, and thus are more likely to be correct. Second, the

common case for program execution is likely to have received a large proportion of

its programmer’s attention, and is thus likely to have been mindfully (and correctly)

written. We use a research tool that can statically estimate the relative run-time

frequency of a given path through a program [11] to measure path frequency. This

tool uses a set of source-level features to predict which proportion of the run-time in

a method will follow a given path. The model is trained using indicative workloads
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on a number of benchmarks which are shown to likely generalize to other projects,

such as those we examine here. Frequency numbers are percentages ranging from 0

to 100, normalized to the range [0, 1]. We measure relative run-time frequency with

respect to the enclosing method. We hypothesize that code that exhibits high likely

path frequency is more likely to contain required temporal properties.

Path Density. We hypothesize that a method with few static paths is likely

to exhibit correct behavior and that a method with many paths is likely to exhibit

incorrect behavior along at least one of them. A method containing many paths is

likely to be more complex than a method containing fewer paths, and we predict

that complexity and size may lead to programmer error. We define “path density”

as the number of traces it is possible to enumerate in each method, class, and overall

program. We hypothesize that a low path density for traces containing the paired

events ab and a high path density for traces that contain only a both make 〈a,b〉 a

likely specification.

We had several goals in developing this particular set of metrics. First, we sought

out code measurements from previous work that seem to correlate with code cor-

rectness, such as readability, code churn, and measures of copy-paste development.

This research seemed like a good place to start, following our hypothesis that code

that is more or less likely to contain errors may also be more or less likely to ad-

here to specifications. We also sought to measure as many different easily-observable

yet independent features of source code as possible, such as author rank, feasibility,

and frequency. Our goals also included developing metrics that could be automat-

ically collected to minimize programmer involvement and maximize the automatic

applicability of our technique.
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4.2 Mining Algorithm

Our mining algorithm extends the WN miner [61] and provides a method for incorpo-

rating our trustworthiness metrics into the process of mining specifications. Trust-

worthiness metrics may perhaps be extended to use in other miners in similar ways;

for a discussion of the generalizability of our metrics, see Chapter 5.

Formally, our miner takes as input:

1. The program source code P . The variable ` ranges over source code locations.

2. A set of trustworthiness metrics M1 . . .Mq, with Mi(`) ∈ R.

3. A set of important events Σ, typically taken to be all of the function calls in P .

We use the variables a, b, etc., to range over Σ.

Our miner produces as output a set of candidate specifications C = { 〈a,b〉 | a

should be followed by b}. We determine the validity of a particular candidate speci-

fication by manual inspection. We present experimental results in Chapter 5.

Our algorithm first statically enumerates traces through P . Since there are an

infinite number of traces, we must choose a finite enumeration strategy. We consider

each method m in P in turn. Using a breadth-first traversal, we enumerate the

first k paths through m, assuming that branches can either be taken or not and

that an invoked method can either terminate normally or raise any of its declared

exceptions [61]. We pass through loops no more than once. This produces a set of

traces T , where each trace t is a sequence of program locations `. We write a ∈ t if

the event a occurs in trace t and a . . . b ∈ t if the event a occurs and is followed by

the event b in that trace. We also note whether or not a trace involves exceptional

control flow; we write Error(t) for this judgment [61].
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Second, we collect a set of trustworthiness metrics that apply simply to program

locations ∈ `, such as code churn and author rank.

Next, where necessary, our miner lifts trustworthiness metrics from locations to

traces. Our lifting is parametric with respect to an aggregation function A : P(R)→

R. We use the functions max, min, span and average in practice. We write MA for a

trustworthiness metric M lifted to work on traces: MA(t) = A({M(`) | ` ∈ t}). We

writeM for the metric lifted again to work on sets of traces: M(T ) = A({MA(t) | t ∈

T}).

Finally, we consider all possible candidate specifications. For each a and b in Σ,

we collect a number of features. We write Nab for the number of times a is followed

by b in a normal (non-error) trace. We write Na for the number of times a occurs

in a normal trace, with or without b. We similarly write Eab and Ea for counts in

error traces. We write SPab = 1 when a and b are in the same package (i.e., defined

in the same library). We write DF ab = 1 when a and b are connected by data-flow

information: when every value and receiver object expression in b also occurs in a [61,

Section 3.1].

Previous work showed that both the ECC and WN miners can be expressed using this

set of features [59]. The ECC miner returns 〈a,b〉 when a is followed by b in some traces

but not in others: Na−Nab +Ea−Eab > 0 and Nab +Eab > 0 and DFab = 1. The WN

miner returns 〈a,b〉 when Eab > 0 and Ea − Eab > 0 and DF ab = SPab = 1. Both of

these miners encode arbitrary heuristic choices about which features are considered,

the relative importance of various features, and which features must have high values.

Both miners also calculate a z-statistic based on the number of traces (according to

their respective definitions) to determine the likelihood that the event pair is likely

to be correct, and use the z statistic to rank the output.
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Na = |{t | a ∈ t ∧ ¬Error(t)}|
Nab = |{t | a . . . b ∈ t ∧ ¬Error(t)}|
Ea = |{t | a ∈ t ∧ Error(t)}|
Eab = |{t | a . . . b ∈ t ∧ Error(t)}|
SPab = 1 if a and b are in the same package, 0 otherwise
DF ab = 1 if every value in b also occurs in a, 0 otherwise
Mia = Mi({t | a ∈ t}) where Mi is a lifted trustworthiness metric
Miab = Mi({t | a . . . b ∈ t}) where Mi is a lifted trustworthiness metric

Figure 4.1: Features used by our miner to evaluate a candidate specification 〈a,b〉.

We extend the set of features by adding the aggregate trustworthiness for each

lifted metric MA. We write Miab (resp. Mia) for the aggregate metric values on

the set of traces that contain a followed by b (resp. contain a). Figure 4.1 lists the

set of features considered by our miner when evaluating a candidate specification

〈a,b〉. Since we have multiple aggregation functions and metrics (see Section 4.1),

Mia actually corresponds to over a dozen individual features.

We also include a number of statistical features, fractions and percentages related

to the main frequency counts Na . . . Eab, such as the z-statistic used by ECC to rank

candidate specifications; we thus use over 30 total features fi for each pair 〈a,b〉.

Rather than asserting an a priori relationship between these features that candidate

specifications must adhere to, we use linear regression to learn a set of coefficients ci

and a cutoff cutoff , such that our miner outputs 〈a,b〉 as a candidate specification if

and only if
∑

i cifi < cutoff . This involves a training stage to determine both the

coefficients and the cutoff, described in detail in Chapter 5.



Chapter 5

Experiments

In this chapter, we describe our miner implementation in further detail and outline

several experiments. These experiments evaluate the effectiveness of our new miner,

provide a comparative analysis of our features over our entire dataset and on individ-

ual benchmarks, analyze the generalizability of the trustworthiness insight to other

specification miners and explore the observed and potential limitations of our current

technique.

5.1 Setup and Definitions

We evaluate our miner on the open-source Java benchmarks listed in Figure 5.1. We

do not need source code implementing a particular interface to run our miner. Instead,

we generate traces from the client code that uses that interface, as in [22, 4, 62, 64, 29].

However, we sometimes need to examine the library code that implements these

interfaces to evaluate emitted candidate specifications and determine if they are true

or false positives.

30
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Program Version LOC Description

hibernate2 2.0b4 57k Object persistence
axion 1.0m2 65k Database
hsqldb 1.7.1 71k Database
cayenne 1.0b4 86k Object persistence
jboss 3.0.6 107k Middleware
mckoi-sql 1.0.2 118k Database
ptolemy2 3.0.2 362k Design modeling

Total 866k

Figure 5.1: Benchmarks used in our experiments.

We selected our benchmark programs to allow a direct comparison to previous

work [29, 59, 61, 64]. To ease the collection of related trustworthiness metrics, we

restricted attention to programs with CVS or SVN source-control repositories. For

each program, we statically enumerated intra-procedural traces (up to 20 per method)

and gathered the information required for the trustworthiness metrics described in

Section 4.1. The most expensive operation was computing path feasibility, which

required multiple calls to Simplify, an external theorem prover [21]. On a 3 GHz Intel

Xeon machine, computing feasibility on the mckoi-sql (our second-largest) bench-

mark took 25 seconds. Enumerating all static traces for mckoi-sql, with a maximum

of 20 traces per method, took 911.982 seconds in total; this step only happens once.

Collecting the other metrics for mckoi-sql is relatively inexpensive (e.g., 6 seconds

for readability, 7 seconds for path frequency); more expensive operations, such as the

collection of the revision history metrics, need only be computed once, and may be

serialized to ease future mining runs. The actual mining process (i.e., considering the

features for every pair of events in mckoi-sql against the cutoff) took 555 seconds.

In these experiments, a false positive specification is a candidate specification pro-

duced by a miner that a human does not judge to encode required program behavior.
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A program can violate a false specification without necessarily containing an error;

by contrast, there is necessarily an error whenever a program violates a true specifi-

cation. Since specifications typically deal with the ordering of API functions, making

this determination involves inspecting the source code implementing the API. The

specification pair 〈Socket.open,Socket.close〉 is considered valid since the documenta-

tion and implementation suggest that important resources will be leaked if Sockets

are not closed (and garbage collection with finalizers is insufficient [60]). On the

other hand, 〈Iterator.hasNext,Iterator.getNext〉 is not a valid specification: while it

is common to obtain the next element in from an Iterator after verifying that it is not

empty, doing so is not required. Our manual determination of invalid specifications

follows that of previous work [61] and conservatively errs on the side of annotating

candidate specifications as false positives. The basic approach to evaluating a can-

didate specification is to manually inspect the code implementing the resources or

libraries involved as well as the associated documentation.

We take this approach because one of the most common uses of specifications is

automatic bug finding, and incorrect specifications often lead to undesired false pos-

itive bug reports [23]. Note however that false positive bug reports and false positive

specifications are independent notions. For example, a false positive bug report can

arise from an imprecise tool using a true specification. In our experiments, we count

false positive specifications to measure miner precision and count the resulting true

positive violations found using those specifications as one measure of specification

utility.
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5.2 Learning Cutoffs and Coefficients

First, we learn the coefficients and cutoff that determine which candidate specifi-

cations to output. This constitutes the model that we use to mine specifications

from source code. In addition to mining specifications, we can analyze the model

to evaluate the relative importance of each of our trustworthiness metrics in terms

of predictive power. We can evaluate predictive power of a metric across all bench-

marks as well as on individual projects to determine how much and why they can

vary between projects. We can also use the model to attempt to correlate the metrics

with one another. In sum, we can use our learned model to accurately characterize

the importance of our metrics, the relationships between them, and their universality

across benchmarks.

We use linear regression to find the coefficients for our miner. Linear regression

takes a set of vectors as input. A vector consists of one numerical value for each feature

in the model and a correct answer. Linear regression is a standard statistical technique

that finds coefficients that best allows the features to predict the answers. Linear

regression requires annotated answers (i.e., a set of known-valid and known-invalid

specifications). We use the valid and invalid specifications mined and described in

previous work [59, 61] as a training set. Given the set of linear regression coefficients,

we perform a linear search of possible cutoffs and choose the one that maximizes an

objective function. This allows us to turn our linear model into a binary classifier.

The objective function allows us to develop a model that exhibits certain desired

properties. We use recall and precision to evaluate potential coefficients. Recall is

the number of real specifications returned out of all possible real specifications, or

the probability that a real specification is returned by the algorithm. Precision is the
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fraction of candidate specifications that are true positives. A high recall indicates

that the miner is doing useful work (i.e., returning real specifications), but without

a corresponding high precision, those real specifications will be drowned in a sea of

false positives. We claim that current false positive rates are too high for existing

techniques to be of practical use.

Either one of these measurements may be trivially maximized: returning all possi-

ble candidate specifications will definitionally include all valid specifications, yielding

a recall of 100%. Returning no specifications excludes all invalid specifications, simi-

larly yielding 100% precision.

Information retrieval provides another metric for evaluating the effectiveness of

a given model: the F-measure. The general formula for F-measure for a given non-

negative real β is shown in equation 5.1:

Fβ =
(1 + β2) ∗ (precision ∗ recall)

β2 ∗ (precision + recall)
(5.1)

β controls how much either precision or recall is weighted in this combined metric.

β = 1 gives us the harmonic mean of precision and recall, which reasonably mitigates

the problem of trivially maximizing either individual metric when evaluating potential

models/coefficients. This metric is preferable because it allows us to build a model

that maximizes both precision and recall while avoiding the trivial model.

We choose to build two different miners, focusing on different information retrieval

metrics: a “normal miner” maximizes the harmonic mean, achieving a balance of true

and false positives, while a “precise miner”, with very few false positives, maximizes

just precision. We do not build a miner that attempts to maximize recall, for several

reasons. First, it is not obvious how one defines recall for the task of specification
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mining. For the purposes of these experiments, we define all possible true positive

specifications as the union of all specifications found by all miners on our benchmark

sets over all of our experiments; however, this definition is imperfect, and omits multi-

state specifications and API specifications that are not relevant to the client code in

question. Moreover, constructing a miner that attempts to maximize recall requires a

human annotator to evaluate an enormous number of candidate specifications. Note

that a method for trivially maximizing recall in this context is to return all possi-

ble candidate specifications for a given benchmark – such a set would, by definition,

include as many true positive specifications as could be defined using all two-pair com-

binations of events in the program under consideration. Over our entire benchmark

set of input traces, there are 18268 unique events, yielding 333,719,824 total possi-

ble 2-state candidate specifications. Assuming optimistically that each specification

requires 10 seconds of human time to validate, such a set of candidate specifications

would take more than 100 human years to evaluate, which is outside the scope of

our experimental means. Finally, one of our primary motivations is to construct a

specification miner suitable for automatic applications, that is, one in which the false

positive rate is low but the specifications are still useful. Accordingly, recall is a less

suitable evaluation metric than the other two.

5.2.1 Trustworthiness Metrics

Our first experiment evaluates the relative importance of our trustworthiness

metrics. Figure 5.2 shows a per-feature analysis of variance (ANOVA), over all of

the training data. The F column denotes the F -ratio, or the square of the variance

explained by the feature over the variance not explained. It is near 1 if the feature
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Metric F p

Frequency 32.3 0.0000
Copy-Paste 12.4 0.0004
Code Churn 10.2 0.0014
Density 10.4 0.0013
Readability 9.4 0.0021
Feasibility 4.1 0.0423
Author Rank 1.0 0.3284

One Error 21.2 0.0000
Same Package 14.2 0.0002
Exceptional 10.8 0.0000
Dataflow 7.6 0.0058

Figure 5.2: Analysis of variance of various trustworthiness metrics. The first seven
metrics entries describe our new features; the final four metrics were explored in
previous work. F measures the predictive power of a feature, or how useful it is in
evaluating whether a specification is true or false. A number near 1.0 indicates that
the metric is not predictive. A high F value indicates a powerful, predictive feature. p
represents the standard statistical significance test – it evaluates the probability that
a feature is not predictive in the model Thus, a smaller value of p denotes that the
metric is more likely to be predictive. A p value below 0.05 indicates a statistically
significant feature (all features except Author Rank were significant).
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does not affect the model. The p column shows the probability that the feature does

not affect the miner. A smaller value for p means that the feature is likely to affect

the model; p ≤ 0.05 denotes a significant result.

All of our trustworthiness features except Author Rank had a significant main

effect (p ≤ 0.05). We were surprised to discover that our formulation of author

rank had no effect on the model: whether the last person to touch a line of code

was a frequent contributor to the project is not related to whether traces adhered

to specifications. This is probably related to our formulation of author rank. A

better measure for author rank or author ability may be more useful than the one we

present here; this remains an open area of research for future work. The Frequency

metric, encoding our static prediction of how often the path would be executed at run-

time [11], was the most important feature: commonly-run paths do not demonstrate

erroneous behavior.

5.2.2 Comparison With Features Proposed In Previous Work

Previous work examined the relationship between error traces and specification false

positive rates [61]. Weimer et al. used several criteria to select candidate pairs: every

event b in an event pair must occur at least once in exception cleanup code, there

must be at least one error trace with a but without b, both events must be declared

in the same package, and every value and receiver object expression in b must also be

in a.

We included these features in our model to determine their predictive power. The

results are shown in the second half of Figure 5.2. These features also affect the model

with varying strength: the “exceptional data flow” condition affects the model most
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strongly, and the “one error” condition has the least significant effect. These features

are not as predictive as our most predictive trustworthiness metric (Frequency), but

tend to fall between feasibility and path density in terms of effect on the model.

Other features have been investigated as useful heuristics to help distinguish be-

tween true and false candidate specifications, such as name similarities (the edit

distance between the two events) or the reachability of one event from another on a

call graph [64]. However, the only other feature from our list of proposed trustworthy

metrics to have been previously investigated, to our knowledge, is feasibility [3]. All

of our new trustworthiness features were more important than this feature.

5.2.3 Trustworthiness Metrics Between Benchmarks

In the first experiment, we analyzed the relative importance of the trustworthiness

metrics on data collected from all seven benchmarks. However, we further wish to

determine whether and how these metrics vary in importance between the different

benchmarks. Such an analysis can provide insight into how much the development

culture on a particular project influences which metrics are important and helps us

analyze the universality of our metrics.

To conduct this experiment, we built specification mining models for each of our

benchmarks using the same technique as for the entire benchmark set. We then

performed an analysis of variance on each model. The results of these individual

analyses are shown in figure Figure 5.3. The average and standard deviations of

F and p for each individual metric are shown at the bottom of the table. Notable

outliers are highlighted.

These results illuminate interesting differences between the different benchmarks.
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While we can develop informed hypotheses as to the nature of these distinctions,

further study is necessary to more fully understand the situations under which the

different metrics work well or poorly. Despite this, we consider each metric in turn

to explore the obvious distinctions that arise between benchmarks and attempt to

reasonably explain them:

1. Frequency: Frequency has very strong predictive power on the axion bench-

mark and comparably weaker predictive power for mckoi-sql. An explanation

for this behavior may lie in the fact that axion ships with a very comprehensive

test suite. Unit tests and similar testing code is likely to demonstrate correct us-

age of particular (important) functionality. While there exists testing code that

exercises an API incorrectly or is otherwise improperly implemented, it is rea-

sonable to assume that, generally, unit testing code is relatively straightforward

and follows implicit specifications describing the code under test. Moreover, the

axion testing code itself is relatively simple: the test classes typically consist

of no more than 100 lines of code. Axion may thus be particularly susceptible

to the definition of path frequency: the frequency measurement of a given path

is the statically predicted frequency with which a path through a method will

be executed dynamically, at an intra-class level. Paths through testing classes

are therefore likely to be correct and also likely to be executed with high fre-

quency. This provides a likely explanation for the strong predictive power of

the frequency metric on the axion benchmark.

It is not obvious why frequency provides comparatively poorer predictive power

on the mckoi-sql benchmark. For a large program, where we might expect

more average behavior (as we see on cayenne, jboss, or ptolemy, mckoi-sql is
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an outlier on a large number of metrics. We leave an exploration for why this

program is so different from the others to later work.

2. Copy-Paste: Two notable outliers on the predictive power of the copy-paste

code metric are mckoi-sql and hibernate. This probably relates to with the

amount of code that has been cut-and-pasted in the hibernate benchmark rel-

ative to its size as compared to the other benchmarks. When considered as a

percentage of total lines of code, 0.8% of hibernate’s code is marked as copied by

the PMD toolkit. This figure is twice as high as that of the benchmark with the

next highest percentage, jboss (which is also the benchmark where the copy-

paste metric has the second-highest measure of predictive power). mckoi-sql

has the lowest percentage of code that has been copied and pasted, at 0.03%.

This relationship is not necessarily strictly linear for the benchmarks with in-

termediate values of F for this metric. However, a general trend does appear

to hold.

3. Code Churn: Code churn is comparatively less predictive on the hsqldb and

mckoi-sql benchmarks than it is on the other five. This may be related to

the number of total revisions in the repositories for these benchmarks as com-

pared to the others. The hsqldb 1.7.1 release contained 72 revisions in the svn

repository, while mckoi-sql had undergone 594 (relatively few compared to its

size). Comparatively, axion had undergone 1178 revisions, cayenne 1959 (quite

a few, given the size of the program), hibernate 2080, jboss 13378, and ptolemy

29323. The amount of source control information available appears to affect the

usefulness of the code churn metric on a given software project.
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4. Density: Density has a surprisingly strong predictive power on the axion and

jboss benchmarks. Observations we made earlier suggest a possible explanation

for this behavior. The axion source code contains a large number of test cases

which display generally correct (API-consistent) behavior and consist of very

simple code. We hypothesized that frequency has strong predictive power on

axion because paths through test cases receive high frequency numbers and are

also very likely to correctly adhere to specifications. The linear model gener-

ated for axion indicates that there is a positive relationship between total path

density and likelihood that a specification candidate is valid. The actual order

in which traces are generated therefore matters, because this particular way of

calculating path density simply tracks how many traces were generated before

this trace in the trace enumeration process. The axion code base is organized

in such a way that traces through the regular source code are enumerated first,

and make up the first 53% of all traces listed in the trace input. The remain-

ing 47% of traces come from the unit testing code. Thus, if we extend our

hypothesis that testing code is likely to be correct, the traces generated later

are more likely to be correct, and total density logically correlates strongly with

specification validity.

Similar logic seems to explain the jboss outlier, which is also strongly influenced

by total path density. While jboss does not contain as many obvious unit tests

as axion does, it does contain many paths through type declarations containing

the word “Debug” and, as with axion, these traces incidentally appear late in

the trace generation process.

Thus, these outliers are very much an implementation accident, suggesting that
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total path density is very sensitive to the order in which we process input files.

Method density and type declaration density (which counts how many traces

have been output for a given method or type declaration) do not display this

level of variation or sensitivity across benchmarks.

5. Readability: We explored a number of aspects of program readability to at-

tempt to explain why it is very predictive on cayenne and much less so on

hibernate. We looked at the readability of all traces in a program as well as

those traces that contain the actual predicted specifications. However, we could

not find a reasonable explanation for the discrepancy. The only obvious sta-

tistical difference between the benchmarks is the range of readable traces in a

given function - hibernate contains functions with very large numbers of read-

able traces (> 300), while cayenne has a much lower range (< 75 in its function

with the most readable traces). However, this may be related to the density

of the code in each of these benchmarks. In any case, its relationship to the

predictive power of readability in each of the benchmarks is unclear. Further

study is necessary to get to the root of this discrepancy.

6. Feasibility: On this metric, the axion and ptolemy projects are ouliers: on

axion, feasibility has little-to-no likely predictive power, whereas it is compar-

atively very predictive on ptolemy. Note that the number of conditionals in a

program is relevant here: a path cannot be marked infeasible by a symbolic

execution engine if there are no conditional guards along the path. Programs

with more conditional guards along its paths would therefore likely contain more

paths that the symbolic execution could mark infeasible, perhaps increasing the

usefulness of the feasibility metric in evaluating candidate specifications. As a



44 EXPERIMENTS

heuristic, we can count the number of times if or while appear in the source

code for our projects (this is obviously not an ideal metric, but it is sufficiently

illustrative for our purposes). ptolemy has approximately seven times as many

conditional guards as axion, which correlates well with this metric’s relative

predictive power between these benchmarks. This ratio of guards to feasibility

predictive power holds for all benchmarks except for mckoi-sql, which contains

fewer conditionals than we might expect based on this hypothesis.

This size and age of the ptolemy benchmark may also influence feasibility’s

predictive power: an older, larger project may contain more old, irrelevant code

and invalid paths that have developed over the development process.

7. Author Rank: Again, axion is a large outlier on this metric. Author rank

measures the proportion of changes to the code base as a whole where authored

by the author of a given line/trace. This formulation of rank attempts to

estimate an author’s potential familiarity with the code base as a proxy for the

author’s likelihood to write correct code.

axion’s testing code, which appears to strongly influence our predictive model

in other ways (see above), also seems to influence the importance of author

rank. All of the testing code was written by one author, who also seems to have

worked on a variety of other portions of the source code. This author likely

wrote correct code, as suggested by the earlier analysis of the testing code, and

so his rank is the most likely factor in the high predictive power of author rank

on the axion benchmark.

The other benchmarks vary in predictive power, but are generally lower, as we

might expect both from the definition of rank and based on the ANOVA results
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across the entire benchmark set.

Benchmark size appears to influence the uniformity of our results. axion, one of

our smaller benchmarks, is an outlier on several of our metrics, which seems to be

related to the proportion of its source that consists entirely of simple, correct test

cases. The last and largest benchmark is also interesting, however. ptolemy is our

largest benchmark by far, consisting of 362k lines of code. It is also the benchmark

that displays the most average behavior. None of the metrics display outlier values

on this benchmark. This fact is encouraging, because we would hope that the largest,

most well-established programs are the most general and thus the least likely to

contain anomalous behavior for a given predictive model. Put differently, the largest

projects are hopefully the most average program for a given set of measurements.

We find this is true for our trustworthiness metrics, in that, with the exception of

mckoi-sql, the larger the programs grow (the table above is ordered by benchmark

size), the fewer outliers in metric predictive power appear. mckoi-sql is anomalous

in several ways: the different features are not especially uniform, it is an outlier on

several of them, and several of our explanations of benchmark variation do not seem

to apply. The reasons for this are not obvious, and deserve further study

Two metrics, however, were highly predictive on all benchmarks: statically pre-

dicted path frequency and code density. These metrics are perhaps more universal

than the others because they are independent of the code development methodology

on any given software project. Where repository commit histories may be influenced

by coding practices or standards, and can thus potentially be ascribed to prescrip-

tions that guide developer behavior, frequency and density are metrics related en-

tirely to the traces themselves. They do not suggest normative standards of code
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Metric Churn Rank Copy-Paste Feasibility Density Frequency Readability
Churn 1 0.64 0.07 0.02 0.11 0.00 -0.13
Rank - 1 0.10 0.04 0.02 0.02 -0.08
Copy-Paste - - 1 0.00 -0.05 0.07 0.08
Feasibility - - - 1 0.01 0.06 0.00
Density - - - - 1 -0.14 0.00
Frequency - - - - - 1 0.01
Readability - - - - - - 1

Figure 5.4: Pearson correlation coefficients between the different metrics measured
across all benchmarks. A number in a location signifies the correlation between the
metrics listed in the row and column of that location. ±1 indicates perfect correlation,
while −0.3 to 0.3 indicates small to no correlation. All metrics except Code Churn
and Author Rank are effectively uncorrelated.

trustworthiness: they are purely descriptive metrics, largely impossible to influence

with programmer behavior. However, as we saw above, they may be sensitive to trace

generation implementation.

These observations provide insight into the nature of our metrics, their strengths

and weaknesses, and their variability between software projects. We are encouraged

by their relative uniformity on our largest benchmark. However, further study is

necessary to scientifically verify our observations as well as to better characterize the

taxonomy along which these metrics may fall, their usefulness as applied to a specific

software project, and their utility as normative (vs. descriptive) descriptors of code

quality.

5.2.4 Correlation Between Trustworthiness Metrics

To analyze the relationship between our metrics themselves, we collected the metrics

across the entire benchmark set. We then performed pair-wise Pearson correlation

calculations between all possible pairs of metrics. Figure 5.4 shows the results of these
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computations. The number in a location in the table corresponds to the Pearson

correlation coefficient between the metrics along the given row or column; metrics

have a perfect correlation (of 1) with themselves. A correlation may be either positive

(both variables increase together) or negative (when one variable increases, the other

decreases). The correlation coefficient may range between -1.0 and 1.0, where ±1.0

indicates that the two variables analyzed are equivalent, potentially modulo a scalar

value. Highly correlated metrics are likely measuring the same thing, and so we would

like our metrics to be as uncorrelated as possible. This will support our claim that

they provide independent measurements of code quality.

The interpretation of the magnitude of the correlation between variables is an open

question, heavily dependent on the nature of the problem (a correlation of 0.9 may

be very strong in a social science application, but quite low in a scientific setting with

highly precise measurements). Despite this, a common heuristic interpretation holds

that correlations between 0.0 and 0.3 (or 0.0 and -0.3) are very small. According to

this heuristic, the table shows clearly that all metric pairs except one are uncorrelated.

The exception is Author Rank, which correlates with relative strength with Code

Churn. This makes sense given how we measure Author Rank: an author’s rank is

simply the proportion of changes to the code base she has committed. We can observe

several other intuitively reasonable effects if we consider the pairs of metrics with

smaller correlations. For example, churn seems to negatively influence readability: the

more that code has been changed, the less readable it becomes. Churn also correlates

slightly with density: code with more static paths is churned more. Similarly, higher-

density paths have a slightly smaller statically predicted execution frequency. There

is a small correlation between author rank and proportion of code that has been cut-

and-pasted; perhaps programmers who commit more to a code base are more familiar
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Figure 5.5: The true and false positives mined by the WN miner from previous work
on various input sets. The total height of the bar represents the number of candidate
specifications returned to the user for inspection.

with portions of the code that may be pasted elsewhere. However, again, these effects

are very small.

We can therefore conclude that all of our significant metrics are distinct, non-

overlapping features that describe independent aspects of code quality.

5.3 Trust Matters for Trace Quality

In our second experiment, we demonstrate that our trustworthiness metrics

improve existing techniques for automatic specification mining. We do this

for two reasons. First, previous work claimed that more input is necessarily better

for specification mining [59]. That is, miners tend to find more true specifications the

more traces they receive as input. We hypothesize that this is not the case and that,
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Figure 5.6: The false positive rate of the off-the-shelf WN miner on various input sets,
as a percentage. The dark and light split of the bar shows the true/false positive
rates of the candidate specifications returned to the user.

instead, miners can find the same specifications on less input, given that the input

is trustworthy. In other words, we claim that the input to a specification miner has

a significant effect on its false positive rate. We further claim that we can lower the

false positive rate by using only trustworthy traces. Second, we wish to establish that

our claims generalize beyond our specific mining implementation: trustworthy code

is useful even when used with other, off-the-shelf, unmodified miners.

For each of our benchmarks, we run the unmodified WN miner [61] on multiple

input trace sets. For generality, we restrict attention to feasible traces, since miners

such as JIST already disregard infeasible paths [3].

We compare WN’s performance on a baseline set of feasible static traces to its

performance on trustworthy subsets of those traces. For this experiment, we define the

trustworthiness of a trace to be a linear combination of the metrics from Section 4.1,

with coefficients based on their relative predictive power for specification mining (the
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F column in Figure 5.2). We use this trustworthiness measure to sort the traces from

most to least trustworthy, and then use portions of this sorted list as input.

We explore the impact of trustworthy traces on false positive rates by passing

various proportions of trustworthy input to the WN miner. Figure 5.5 shows the raw

results when only the 25% most trustworthy traces are used; Figure 5.6 shows the

results normalized to 100% for a clearer view of the actual false positive rate. On

the baseline set, WN has 683 false positives, or a false positive rate of 90%. When

restricted to the 25% most trustworthy traces, WN produces 39 real specifications and

306 false positives: a false positive rate of 89%. Notably, we find over one-half of the

specifications with only one-fourth of the input, without sacrificing the false positive

rate. Beyond halving the raw false positive rate, and thus human effort required

to validate the results, this is useful if the smaller output set contains particularly

helpful specifications, which we investigate next. As a lower bound, only two true

specifications can be mined from the 25% least trustworthy traces. The effect on false

positive rates is even stronger when we consider the top 10% of traces (though again,

we find fewer true positives than we do on the entire input set)..

On the entire baseline set, WN miner produces 75 real specifications. Averaged

over all the benchmarks, WN finds the same specifications using only the top 60%

most trustworthy traces: 40% of the traces can be dispensed with while preserving

true positive counts. As a point of comparison, when a random 40% of the traces are

discarded, we find only 56 true specifications in total, with a 4% higher rate of false

positives.

First, we can conclude that the trustworthiness concept can generalize to other

specification miners beyond our own. Its usefulness is not an accident of our im-

plementation. Second, we disprove the claims of previous work: more input is not
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necessarily better for specification mining, so long as the input is trustworthy. These

results have several additional potential applications. Any static specification mining

technique involves a particular trace enumeration strategy; trace generation is often

a bottleneck. Rather than enumerating a certain number of traces per method, we

claim that trustworthy traces should be pursued and untrustworthy traces should be

skipped. These results also have implications for multi-party techniques to mine spec-

ifications collaboratively by sharing trace information [59]: focus should be placed on

sharing information from trustworthy traces. Our trustworthiness metrics could gen-

erally be used as a reprocessing step to improve any static trace-based specification

miner (e.g., [23, 29, 61, 64]). However, they can be even more useful when directly

incorporated into a mining algorithm.

5.4 Trustworthy Specification Mining

For our main experiment, we measure the efficacy of our new specification

miner on all input trace sets. We must first verify that our miner is not biased with

respect to our training data. A potential threat to the validity of our results is over-

fitting by testing and training on the same data. We train our miner using labeled

training data. We then test the model developed in this testing phase and evaluate

the miner by hand-annotating and inspecting the candidate output. A potential

problem with this approach is that our results might not generalize if the model is

moved to evaluate a software project that we did not use in training. Fortunately,

statistics offers a method to evaluate this risk for a given task. We use 10-fold cross

validation to mitigate this threat [40]. We randomly partition the data into 10 sets

of equal size. We test on each set in turn, training on the other nine; in this way
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we never test and train on the same data. If the average results of cross-validation

(over many random partitions) are different from the original results, it may indicate

bias. For our experiment, the difference was less than 0.01%, indicating little or no

bias. Finally, recall that our trustworthiness metrics are defined independently from

the programs in the benchmark sets, and consists of numerical values and ranges

that are either objective or are developed in previous work on different input sets.

Therefore, it is safe to conclude that our results are significant and will generalize to

other programs outside our training set.

5.4.1 Mining Results

Figure 5.4 shows the results of applying our new specification miner from Chapter 4

to the benchmarks in Figure 5.1. For each benchmark, we report the number of

candidate specifications returned, broken down into valid specifications and false pos-

itives (determined by manual verification of the results). We also report the number

of distinct methods that violated the valid mined specifications (i.e., the number of

policy violations found by using that specification with a bug-finding tool). Each

method is counted only once per specification, even if multiple paths through that

method violate it. We report this number because it represents a reasonable metric

for specification utility. A miner that produces trivial specifications is not especially

useful. Unfortunately, it is difficult to measure the quality of a specification with

respect to refactoring or documenting code, and so we use the number of violations

found as a heuristic for the utility of the true specifications mined (we do not report

the number of violations found for false positive specifications). Finally, we include

published results for the WN [61] and ECC [23] miners for comparison.
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The WN and ECC miners were chosen as points of comparison because of their com-

paratively low false positive rates. Other methods produce even more candidates.

The Perracotta miner can produce multi-state specifications that are more compli-

cated than those presented here. However, they do explore the generation of two-state

properties. On jboss, the Perracotta miner produces 490 candidate two-state prop-

erties of this variety, which the authors say “is too many to reasonably inspect by

hand.” [64] Gabel and Su report mining over 13,000 candidates from hibernate [29].

By contrast, our precise miner produces six – one is a false positive, and the other

five find over 150 violations.

Our “normal miner” finds important specifications with a low false positive rate.

It improves on the false positive rate of WN by 20%. Moreover, the specifications

that it finds generally find more violations than those found by WN: 740 violations,

or 15 per valid specification, compared to WN’s 426, or 7 per valid specification. Each

candidate specification from our miner helps to find 4 violations on average; for WN,

less than 1 violation is found on average per candidate inspected. In our experience,

150 or so candidate specifications present a reasonable challenge for manual inspec-

tion, particularly when the potential payoff is high. More than a couple of hundred

candidates becomes arduous.

We also trained a “precise miner” that seeks to maximize precision and reduce the

false positive rate as much as possible. This “precise miner” finds fewer valid speci-

fications total, but its 5% false positive rate approaches levels required for practical

automatic use. It finds 30% as many specifications as WN, and 60% of the violations,

but each candidate inspected yields over 12 violations on average. Moreover, users

are often unwilling to wade through voluminous tool output [23, 36].

Both miners far outperform the ECC miner in terms of true specifications, false
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positive rates, and violations found.

The fact that our miners find more useful specifications than previous work may

be related to how they select specifications for consideration. The WN miner only

considers specifications that are followed at least once in general and violated at least

once along an exceptional path. This implements the intuition that programmers

make mistakes in exception-handling or clean-up code. The notion of a “bad path” is

important to the WN miner’s selection of candidate specifications: the specification

must be followed on at least one “good” path and violated on at least one “bad” path

in order to be considered for ranking. Similarly, our miner considers both “good” and

“bad” paths when evaluating potential specifications: a specification is likely to be

valid if it is often followed on trustworthy (good) paths and violated on untrustwor-

thy (bad) paths. Our criterion for specification consideration is broader. There are

many more untrustworthy paths than there are exceptional paths. The WN miner

by definition restricts potential specifications to a small subset of possibilities, and

thus may limit itself to finding specifications that can only detect a certain type of

error. By contrast, our trustworthiness-metric-based miner admits a broader range

of specifications and definition of “bad” code. This may explain why it finds more

violations per specification. However, a study of the types of violations found by

a specification and of specification utility in general remains the focus of potential

future work.

5.4.2 Miner Limitations

Our technique displays some limitations in terms of the specifications it can and

cannot accurately mine.
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1 Hibernate.cirrus.hibernate.Session beginTransaction ()
2 Hibernate.cirrus.hibernate.Transaction commit ()

Figure 5.8: The single false positive presented by the precise miner

1 2 3

5 4

SF.openSession

S.close

S.beginTransaction

error

error

T.rollback

T.commit

Figure 5.9: A multi-state finite state machine describing the Hibernate Session API,
taken from the Hibernate documentation. Our false positive corresponds to the
S.beginTransaction and T.commit edges.

First, it is worth discussing the false positives that remain, even when we optimize

for precision. The precise miner performs without false positives in all cases but one.

On the Hibernate benchmark, the miner yields 1 false positive. This anomaly is worth

examining in further detail. The candidate specification in question is shown in Fig-

ure 5.8. At first glance, this candidate is not obviously a false positive. It represents

a common code pattern that is documented as part of the Hibernate API [61], shown

as a finite state machine (FSM) in Figure 5.9. The true-positive example in Chap-

ter 3 (〈beginTransaction,close〉) is adapted from this FSM. In fact, the code pattern

in Figure 5.8 is almost the required behavior. Intuitively, it represents the common

behavior in code that uses this API (except in error cases). While the behavior en-

coded by this specification is correct, it is not required : it is possible for a path to

call openSession and not eventually call commit and still be error-free if, for example,

it calls rollback instead. The only required behavior from this FSM that can be en-
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coded as the type of temporal property we are mining is 〈beginTransaction,close〉,

because any path that calls beginTransaction must always eventually call close if it

is to be considered error-free. This is not true of beginTransaction and commit.

Because this behavior is probably the common case for usage of this API, there are

no traces on which this false specification is followed on which the true specification

is not, and thus the trustworthiness measurements are almost identical for the two

sets of traces.

This example is interesting for several reasons. First, it implies that further study

is needed to help distinguish between extremely common behavior and required be-

havior, and that trustworthiness, while a very useful metric for distinguishing between

the two, cannot always solve the problem. However, it also suggests that our assump-

tions of two-state specifications and the utility of trust measurements are usually

reasonable. The miner mistook this candidate specification because of the level of

overlap between this code pattern and the actual required behavior. None of the

other benchmark APIs were mistakenly handled in this manner. This implies that

our model for specifications as they appear in the code is fairly sound in practice.

Despite this anomaly, the false positive rate of our “precise miner” is very low.

With a 5% false positive rate, and more useful specifications (in terms of bug-finding)

than those of previous work, we claim that our precise miner might be reasonable in

both interactive and automatic settings.

There are further specifications and classes of specifications that our trustworthiness-

miner technique will necessarily miss.

Most obviously, specifications that are more complicated than the two-state prop-

erties we consider here will be excluded from our analysis. One imagines that the

trustworthiness metrics may extend to mining more complicated patterns. However,
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an investigation of this hypothesis remains future work.

Trustworthiness may not be able to find all possible two-state specifications. Our

practice of mining on client code leaves our technique vulnerable to situations in

which the client code does not make use of patterns controlled by specifications –

if a program never opens a socket (or even if a program closes a socket without

ever opening it), 〈open,close〉 will not appear in our miner’s candidate set. Certain

patterns of usage may be allowable for a given API, but a client making use of the

API may have stricter requirements and use the API in a way that treats sequences

of calls as specifications even if they are not truly required behavior according to the

library documentation. Specification mining from client traces is sensitive to patterns

of use in the client code.

Trustworthiness metrics may be fooled by development methodologies or code

evolution. A well-established, well-tested and stable code base may be dramatically

reshuffled if an underlying library API is changed and displays new and different spec-

ifications to the client code. The previously stable code may change substantially and

quickly, and programmers may need to rapidly code around changed usage patterns

while maintaining previous functionality. This could yield code with high churn and

lower readability even though it has only been changed in order to maintain correct-

ness. Very stable code that has not been changed will appear more trustworthy to our

miner, potentially causing us to mine the old, incorrect specifications for the API in

question. Alternatively, very stable code in an infrequently used (in practice) portion

of a project may appear very stable to our algorithm but contain just as many bugs

and incorrect usage patterns as a portion of the code that is still evolving, further con-

fusing our trustworthiness approach. Finally, coding practices may fool our metrics

or at least render them less useful, such as a refactoring pass over a project that ren-
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ders everything more or equally readable, or a large number of unit tests that confuse

the path density and frequency metrics. The impact of these potential development

situations on our metrics and their usefulness in specification mining remains an area

of future investigation. However, they represent intuitively reasonable areas in which

our metrics would exclude true specifications in the interest of favoring trustworthy

code in the specification mining process.

5.5 Threats to Validity

Although our two miners outperform existing approaches in terms of bugs found and

false positives avoided, our results may not generalize to industrial practice. The

benchmarks used in this project may not be representative of other projects. We

chose the benchmarks to be directly comparable with previous work [29, 59, 61, 64],

and note that the domains represented are more indicative of server and back-end

computing than of client code. A second threat is over-fitting. We use cross-validation

in Section 5.4 to demonstrate that our results are not biased by over-fitting. A third

threat lies in our manual validation of the output: our human annotation process may

mislabel candidate specifications. To mitigate this threat we re-checked a fraction of

our judgments at random and used the source code of a and b to evaluate 〈a,b〉. A

final threat lies in our use of “bugs found” as a proxy for specification utility: while

our mined specifications find more policy violations, they may not be as useful for

tasks such as documenting or refactoring. We leave an investigation of specification

utility for future work.
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5.6 Experimental Summary

This experimental section supported several key claims. First, we built a model to

relate trustworthiness metrics in code to valid specifications. We then performed an

analysis of variance over the entire benchmark set to provide a comparative analysis

of the importance of the different metrics. We learned that statically predicted path

frequency is very predictive but that our formulation of author rank is not; our model

implies a need for a better definition of author rank in future work. We performed

similar ANOVAs on models built for each individual benchmark and explored several

reasons for variation in a metric’s predictive power. This gave some insight into what

drives the predictive power of a metric and clarified how the features work in practice.

Next, we analyzed potential correlations between our features and found that our sig-

nificant features were statistically independent of one another (the exception to this

is author rank, which is not significant over the entire benchmark set). For our second

set of experiments, we partitioned an input set of program traces by trustworthiness

and gave different sets of input to an existing miner. This experiment established

that we can eliminate at least 40% of untrustworthy statically generated trace in-

put to existing miners and still find the same specifications. We also showed that

smaller sets of trustworthy input can find fewer specifications, but with much lower

rates of false positives, than the entire input set; these smaller sets also find more

specifications than random sets of equivalent sizes. This set of experiments disproved

of previous work that claimed that more input is necessarily better for specification

mining: less input is just as good, if not better, so long as the input is trustworthy.

These experiments also showed that the idea of trustworthiness generalizes to other

specification miners and the metrics’ usefulness are not an accident of our implemen-
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tation. Finally, we evaluated the performance of our new miner. We found that our

normal miner outperforms previous work by 20%, and finds more useful specifications

with fewer false positives than previous input. Our precise miner found fewer true

positives, but reduced the false positive rate by an order of magnitude and found a

large number of potential violations when compared to previous work. In fact, this

miner found only one false positive on the entire input set. Finally, we explored some

limitations of our technique as well as threats to validity. While trustworthiness is a

useful technique for mining two-state specifications from source code, plenty of work

remains to be done; we explore some of these ideas in Chapter 7.



Chapter 6

Related Work

In this chapter, we describe related work. Our work falls between two main research

areas: specification mining and software engineering quality metrics.

6.1 Previous Work in Specification Mining

Our work is most closely related to existing specification mining algorithms (see [61]

for a survey). The ECC [23] and WN [61] algorithms form the basis of our own. ECC oper-

ates on statically enumerated traces and consider pairs of events that occur together

on at least one trace, operating under the assumption that the programmer is usually

correct (and behavior that deviates from the norm is likely incorrect). They use the

z-statistic to rank the candidate specifications in the order of their likelihood [41].

However, this technique is prone to a high rate of false positives, although this concern

was not a primary focus of their work. WN improved on their results by narrowing the

criteria used to select candidate specifications and considering various source code-

and software engineering-based features: candidate event pairs are required to have a

data-flow dependence between them, should help find at least one error, should come

62
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from the same package, and, most notably, should exhibit a violation along at least

one exceptional path. These insights improved on the true and false positive rates of

ECC by an order of magnitude. Our work uses many of the same techniques for the

gathering of event pairs and incorporates features used by these two miners in the

model-development process. We also validate some of the assumptions underlying

the work in the WN miner. We also use the specifications mined by these previously

published techniques to train our linear regression.

Whaley et al. mine interface specifications in two ways: statically and dynami-

cally [62]. The WML_static miner examines library source code, assumes that typestate

is explicitly captured by object fields and thrown exceptions, and produces a single

multi-state specification. The miner uses multiple finite state machine sub-models to

model a class’s interface, and develops the sub-models using the statically generated

traces as training input. More specifically, the miner models values of fields that

conditionally raises exceptions along some path. If a function will raise an exception

when a field has a certain value, and another function will set that field to that value,

the event pair is prohibited in the final policy. The static miner outputs the most

permissive policy based on these restrictions. In contrast to their work, our approach

learns policies based on common client usage and not on a direct object-field en-

coding of typestate: as a result, we can potentially learn policies that are based on

other resource implementation strategies. However, we do not learn the same type of

specifications.

The WML_dynamic [62] miner examines dynamic traces and also produces a per-

missive multi-state specification that permits all observed behavior. Because of this,

it is very sensitive to correct input selection. We attempt to incorporate similar in-

sights in the construction of our miner by using the static path frequency prediction
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metric, and we, too, find that incorporating information about the dynamic behavior

of programs can improve the accuracy of mining. However, some of our features are

sensitive to the input and the nature of the software projects in question.

The JIST [3] miner refines the WML_static approach and uses techniques from

software model checking to rule out infeasible paths. The JIST miner attempts to

develop the most permissive interface for any given class. The tool takes as user input

a class and a particular undesirable exception; the final policy describes the class and

the most permissive API that, when followed, does not allow the exception to occur.

They treat the potential API as a regular expression and the task of learning the

interface as a game involving asking a teacher (the program traces) questions about

what is in the regular language in question. In this way, JIST uses the statically

generated paths to successively refine the policy. We also use symbolic execution to

generate our paths, and similarly find it beneficial to the construction of a miner.

In addition, JIST works on a per-class basis, operates on library implementation

code, and requires that the programmer choose the class under consideration. By

contrast, our approach works on client code, does not require manual guidance to

pinpoint interesting classes, but only generates two-state policies and may consider

more infeasible paths.

The Perracotta [64] miner is a dynamic analysis tool that mines multiple candi-

date specifications that match a given template (the two-state specification form used

in this paper is one such template). Perracotta defines a hierarchy of property tem-

plates that capture commonly-occurring program behavior. Their dynamic analysis

can compute an approximate policy that is later checked by a verification tool such as

a model checker; it has been used on systems code including Windows kernel APIs and

Unix filesystem implementations, and has successfully inferred large 24-state policies.
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By contrast, our work is limited to mining simpler two-state candidate specifications.

Gabel and Su [29] extend Perracotta using BDDs, show that two-state mining is NP-

complete, and show that some specifications cannot be mined by composing multiple

two-state specifications. This suggests that our work needs to be further extended to

capture behavior that cannot be expressed by simply composing the temporal prop-

erties we mine. However, while our temporal properties cannot express all possible

program specifications, we do find them useful in identifying potential errors in code.

The Strauss tool [4] form “scenarios” using events from dynamic traces of program

behavior. It requires a number of programmer inputs, such as a seed event and

the maximum scenario size. The tool extracts automata from scenarios based using

an out-of-the-box probabilistic finite state machine learner. The learner outputs a

single policy, which the tool then “cores” by dropping transitions with low probability

weights. The final output is a single specification. In later work, they show that

debugging even these cored specifications can be difficult, and so provide Cable, a

new tool to assist in the process [5].

Shoham et al. [54] mine by using abstract interpretation where the abstract values

are specifications. Their technique is inter-procedural and uses alias analysis to avoid

exploring false paths. They offer a new algorithm to summarize abstract traces to

effectively rule out incorrect behavior: they learn automata-based specification ab-

stractions and then merge similar usage patterns. Their work takes a complementary

approach to obtaining precision in a static specification miner: instead of focusing on

software engineering metrics related to how the code was created, they use program

analyses to analyze the program precisely.

Unlike WML_static, JIST, Strauss and Shoham et al., we do not require that

important parts of the specification, such as the classes of interest, be given in advance
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by the user. In contrast, we explicitly seek to minimize the amount of necessary user

input and strive for almost total automation of the mining process. This is the

motivation behind minimizing our false positive rate as much as possible. However,

our initial results suggest that human guidance could be incorporated in our process to

great effect: a human might annotate which portions of the source code constitute the

test suite, for example. Unlike Strauss, WML_dynamic, Perracotta, JIST, and Shoham

et al., we produce multiple candidate specifications rather than a single specification.

Even though they may encode important program behavior, complex specifications

can be difficult to debug and verify [5] Unlike Perracotta or Gabel and Su, we cannot

mine more complicated templates, such as three state specifications. Like ECC, WN,

Perracotta, and Gabel and Su, our miner is scalable.

The Daikon system [24] is an example of a dynamic invariant-detection system.

In Daikon, the program under consideration is instrumented so that at various pro-

gram points, the validity of potential algebraic relations on program variables (e.g.,

x = y, y <= z 3+, etc.) is checked and recorded. The program is run on an indicative

workload, and any relations that are true on all runs are considered as candidate

program invariants. The invariants learned by Daikon are not directly comparable

to the temporal-safety specifications considered here, and in general the Daikon ap-

proach is complementary. Our approach does not require indicative workloads or

program transformations, but it will never find useful invariants such as y <= z 3+.

Such invariants are quite useful as pre- and post-conditions for full formal program

verification.

The primary difference between our miner and previous miners is that we use

software engineering information, encoded as trustworthiness metrics, to weight in-

put traces and thus obtain low false positive rates. To our knowledge, no published
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miner that produces multiple two-state candidates has a false positive rate under

90%. As an example, Gabel and Su’s approximate algorithm produces 13,608 candi-

date specifications on Hibernate alone; their strict algorithm produces more [29]. In

contrast, our precise miner presents a 5% false positive rate that still finds over 250

violations.

6.2 Previous Work in Software Quality Metrics

There is a large amount of previous research devoted to automatically analyzing

source code’s quality1. We seek to provide a broad overview here of both long-

established measures as well as more recent work.

Perhaps the most well-known software metric is the McCabe complexity met-

ric [46], which measures the complexity of a piece of software or a software module

using graph-theoretic approaches. The metric seeks to measure the amount of deci-

sion logic in a given piece of software. McCabe defines M , the cyclomatic complexity

of a structured program, as:

M = E −N + 2P (6.1)

where E is the number of edges in the program’s control flow graph, N is the

number of nodes in the graph, and P is the number of connected components. M is

an upper bound for the number of test cases necessary to achieve complete coverage,

and a lower bound for the number of total possible paths through the control flow

1Industry has adopted some of this work to try to impose minimum standards for code quality,
to mixed effect
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graph. This metric has been adopted by some industrial practitioners to measure

code quality and impose limits on code complexity; the Eclipse IDE will notably

calculate it for you, in the same way that many word processors will calculate the

Flesh-Kincaid metric for text readability. It can be used, at least, to suggest areas of

code that may need additional programmer attention.

This metric focuses on the graph structure of the program; our metrics are limited

to source-level features or features that can be extracted from other software engi-

neering artifacts such as the source control repository. We do not focus on the graph

structure of the program. However, future experiments might explore the usefulness

of cyclomatic complexity as a trustworthiness metric and compare it to the other

metrics explored here.

Halstead et al. developed Software Science, wherein he attempted to develop fixed

rules and measurements for software based on easily measurable, universal attributes

of source code [33]. He defined the following measures:

n1 = number of distinct operators in a program (6.2)

n2 = number of distinct operands in a program (6.3)

N1 = number of operator occurrences (6.4)

N2 = number of operand occurrences (6.5)

Based on these primitive measures, he developed a number of derivative measures

measures. The following list is a selection of these measures:
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Vocabulary(n) = n1 + n2 (6.6)

Length(N) = N1 +N2 = N ∗ log2(n1 + n2) (6.7)

Volume(V ) = N ∗ log2(n) = N ∗ log2(n1 + n2) (6.8)

Level(L) V ∗/V = N ∗ log2(n1 + n2) (6.9)

Effort(E) = V/L (6.10)

Faults(B) = V/S∗ (6.11)

Time(T ) = E/S (6.12)

Vocabulary and Length are the closest measures to our traditional notion of code

length of lines of code. Volume represents the number of bits required to encode the

program in an alphabet using one character per operand/operator. Level measures

the level of abstraction of the procedure, characterized as the inverse of the difficulty of

coding an algorithm or program. Effort is meant to measure the number of elementary

mental discriminations, or psychological moments (S) required to code the program.

A moment of psychological time is defined by psychologist John Stroud as a discrete

burst of mental activity taking place in the brain [32]. Faults attempts to predict the

number of faults in a program, and Time approximates the amount of time needed

to code a given program, module, or algorithm.

These measures, while intuitively appealing, ultimately did not prove to hold in

practice [34]. These metrics use a small class of measures (operators and operands) to

attempt to predict a larger number of code features (Effort, Faults, Time, etc). Our

metrics differ from these in that they are derived from software engineering artifacts in
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addition to the source code and they are attempting to predict one particular feature:

whether or not a candidate specification is a true or false positive. In addition, our

model does not assume an a priori combination of features; we use linear regression

to determine the best combination of our metrics.

Albrecht developed another technique for measuring the size of an information

system called function point analysis (FPA) [2]. The general goal of this technique is

to measure the function value delivered to a user or customer that is independent of

the language or technology used. To measure productivity, one defines a product and

a cost, where the product is the functional value that a piece of software delivers to the

user. The functional user requirements are categorized into one of five types: outputs,

inquiries, inputs, internal files, and external interfaces. The number of each of these

objects are weighted by their relative value to the customer, and their weighted sum

is adjusted according to several factors. The functional size of a program can be

used as input to several project and organizational decisions, such as determining

an application’s development or maintenance budget, the productivity of a software

team, the software size or complexity, or necessary testing effort, where the number

of necessary test cases is equal to the number of function points in a piece of software.

FPA differs from our work in several ways. It seeks to measure code utility from

the point of view of value delivered to the user; our work does not consider usefulness

of code. Function points measure productivity, which is distinct from trustworthiness.

While this type of analysis measures features beyond the simple source code features

from software science, it does not look at external software engineering artifacts such

as source control in the same way our work does. However, like cyclomatic complexity,

the number of function points in a piece of code might provide informative input to

our trustworthiness model. However, it does require more programmer intervention
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than we consider ideal.

Chidamber and Kemerer proposed a metrics suite for object oriented design to help

manage the process of object-oriented design and program development [15]. They

proposed and evaluated six design metrics: weighted methods per class (WMC),

coupling between objects (CBO), depth of inheritance (DIT), number of children

(NOC), response for a class (RFC), and lack of cohesion among methods (LCOM).

These metrics describe program complexity, like the others do, and do not depend

on additional software engineering artifacts. Basili et al. found that all but LCOM

correlated with defects in a class [8]. Other researchers found similar relationships

between these OO complexity metrics and software quality [56, 57], where quality

is defined as “absence of defects.” As with the other metrics suites, we may be able

to incorporate these measures of code complexity into our trustworthiness model to

either evaluate the usefulness of these metrics or generally improve the accuracy of

our model.

More recent work has looked at similar issues to those we consider here. Nagap-

pan and Ball analyzed the relationship between software dependences, code churn,

and post-release failures in the Windows Server 2003 operating system [47]. They

found that a combination of dependences and relative churn between dependent code

modules provided strong predictive power for post-release failures. Their conception

of code churn code is more sophisticated than ours in that they define relative code

churn, or the amount of churn in one module as compared to another, dependent

module, and show it to be far more predictive of future errors than absolute churn.

We use absolute churn as a metric in our work. This work suggests that more sophis-

ticated measures of churn might be more predictive; future experimentation might

evaluate this hypothesis. We also ignore the relationships between source code mod-
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ules, though an application of this idea to trustworthiness is less obvious. Fenton et

al. explored the use of several metrics for fault prediction in code, and found that size

and complexity do not relate to fault density, and they found that popular complexity

metrics do not seem to correlate to fault density [26]. Graves et al. similarly attempt

to predict errors in code by mining source control histories [31].

Like our work, these studies use features independent of the source code - module

dependencies and source control - to make predictions about code. Unlike our work,

they define quality as “absence of defects”; we define it as “adherence to specifica-

tions of correct behavior.” The similarity of these definitions suggest that our use of

detected errors as a proxy for specification utility may be valid in practice. Generally,

this related work provides support for our claim that there is a relationship between

code churn, complexity metrics, and code quality. This work also suggest several

additional metrics, notably of code complexity, that may be of use to our trustwor-

thiness model. No other work, to our knowledge, combines as many distinct measures

of code trustworthiness from such a varied array of software artifacts. However, the

related research suggests that our approach is reasonable.



Chapter 7

Future Work and Conclusions

In this chapter, we lay out possible avenues for future research and summarize our

work with concluding remarks.

7.1 Future Work

This work suggest multiple avenues for extension and further research. First, we

could explore different measurements for code trustworthiness or compare our own

to established metrics, such as those outlined in Chapter 6. Another natural next

step is determining how well the trustworthiness-based model for specification mining

extends to larger specifications and more complicated patterns. The basic (ab)* tem-

plate we mined here is useful in practice, but really only scratches the surface of the

more complicated specifications written and used by practitioners and error-finding

tools. Second, we might examine our heuristic for specification utility. “Number of

violations found” may represent a reasonable characterization of utility for our pur-

poses, but a more complete treatment of the issue might examine fault severity or

explore other measures of specification utility, such as usefulness in documentation

73
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or code refactoring. Third, we focused on creating as automatic a miner as possible,

with the hopes of mitigating the need for programmer intervention. This may be

helpful for automatic applications. However, there are many other potential uses for

specifications. We might study the influence a programmer’s intervention has on the

mining process to either guide mining or provide insight as to important measures

of code trustworthiness. Our comparative results suggest that testing code may be

particularly informative to mining. We could evaluate what effect “knowing” (either

through programmer annotation or inference) which portion of the source code con-

stitute testcases has on the accuracy of specification mining. This work also raises

the question of how automatic mining compares to specification generation by an

informed expert with access to the source code. This suggests interesting compara-

tive experiments in which we compare the output of our miner and the output of a

programmer, and perhaps explore how helpful the output of our tool is when used by

an informed expert developing more comprehensive specifications or trying to under-

stand the code.

Our trustworthiness metrics may have applications outside the mining of simple

two-state specifications. Future work may explore the ways in which the idea of

trustworthy code can be brought to bear on other problems. For example, we have

spent time exploring the use of genetic program to automatically repair programs.

Code trustworthiness may offer useful guidance to a genetic algorithm that tries to

repair a program by randomly selecting portions of the code to change. Untrustworthy

code may be more likely to require changes, and trustworthy code might be more likely

to contain reasonable fixes. We might try to correlated trustworthy code with other

interesting features, such as error density, and adapt the idea for use in a bug-finding

tool. Finally, the metrics themselves bear comparison to other accepted and novel
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measures of code quality, particularly those currently in use in industry.

7.2 Conclusions

Formal specifications have myriad uses, from testing and optimizing, to refactoring

and documenting, to debugging and repair. Formal specifications are difficult to

produce manually, and some existing automatic specification miners have 90–99%

false positive rates. We wished to create a better specification mining technique that

finds useful specifications with a lower rate of false positives.

Our primary claim in this work is that not all parts of a program are equally in-

dicative of correct program behavior. We believe that a major problem with previous

specification miners is that they count the contribution of all code equally when cal-

culating the probability that an event pair is a true specification. Instead, we believe

that code should be weighted by the likelihood that it is correct or that it conforms

to program APIs.

We encode this intuition using trustworthiness metrics such as predicted execution

frequency, measurements of copy-paste code, code churn, software readability or path

feasibility. We use these metrics to build a specification miner by learning a linear

model using previously published results. Statistical analysis on this model yields

several interesting conclusions. First, these metrics are generally independent code

measurements and thus each independently contribute to the overall model. The

exception to this claim is Author Rank: our formulation of this metric does not

substantively effect the overall model, and shows a moderate correlation with the

code churn metric. However, the model showed some variability across the different

benchmarks, and there are software projects for which the rank of an author is a useful
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predictive measurement for whether code adheres to correct specifications. Size and

structure of a program’s source code also seems to affect the model. For example, our

metrics were more consistent on the largest benchmark, ptolemy, while the size and

layout of the test suite affected the utility of various metrics on the axion benchmark.

We further show that these metrics can be used to improve the performance of

existing trace-based miners by focusing on trustworthy traces. If we use the metrics to

sort the traces and use an off-the-shelf miner on the most trustworthy of the input, we

can dramatically lower the false positive rate and still find useful specifications. Very

good true positive results can be found by simply passing the top 25% of traces to an

existing miner, which may have important implications in collaborative specification

mining. We finally concluded that equivalent results can be obtained using only 60%

of the input, invalidating the claims of previous work that more input is necessarily

better for specification mining.

We used our metrics to create a new specification miner and compare it to two pre-

vious approaches on over 800,000 lines of code. Our basic miner learns specifications

that locate hundreds more bugs than previous miners while presenting hundreds fewer

false positive candidates to programmers. When focused on precision, our technique

obtains a low 5% false positive rate, an order-of-magnitude improvement on previous

work, while still finding specifications that locate hundreds of violations (and thus po-

tential errors). To our knowledge, among specification miners that produce multiple

candidate specifications, this is the first to maintain a false positive rate under 90%.

We believe it to be an important first step towards utility in an automated setting.
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