
Decision Procedures for String Constraints

A Dissertation

Presented to

the Faculty of the School of Engineering and Applied Science

University of Virginia

In Partial Fulfillment

of the requirements for the Degree

Doctor of Philosophy (Computer Science)

by

Pieter Hooimeijer

May 2012



c© 2012 Pieter Hooimeijer



Abstract

String-related defects are among the most prevalent and costly in modern software development. For

example, in terms of frequency, cross-site scripting vulnerabilities have long surpassed traditional

exploits like buffer overruns. The state of this problem is particularly disconcerting because it does

not just affect legacy code: developing web applications today — even when adhering to best practices

and using modern library support — remains error-prone.

A number of program analysis approaches aim to prevent or mitigate string-related defects;

examples include static bug detectors and automated testcase generators. Traditionally, this work

has relied on built-in algorithms to reason about string-manipulating code. This arrangement is

suboptimal for two reasons: first, it forces researchers to re-invent the wheel for each new analysis;

and second, it does not encourage the independent improvement of domain-specific algorithms for

handling strings.

In this dissertation, we present research on specialized decision algorithms for string constraints.

Our high-level approach is to provide a constraint solving interface; a client analysis can use that

interface to reason about strings in the same way it might use a SAT solver to reason about binary

state. To this end, we identify a set of string constraints that captures common programming

language constructs, and permits efficient solving algorithms. We provide a core solving algorithm

together with a machine-checkable proof of its correctness.

Next, we focus on performance. We evaluate a variety of datastructures and algorithms in a

controlled setting to inform our choice of each. Our final approach is based on two insights: (1)

string constraints can be cast as an explicit search problem, and (2) to solve these constraints, we can

i



instantiate the search space lazily through incremental refinement. These insights lead to substantial

performance gains relative to competing approaches; our experimental results show our prototype to

be several of magnitude faster across several published benchmarks.


