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Abstract

String-related defects are among the most prevalent and costly in modern software development. For

example, in terms of frequency, cross-site scripting vulnerabilities have long surpassed traditional

exploits like buffer overruns. The state of this problem is particularly disconcerting because it does

not just affect legacy code: developing web applications today — even when adhering to best practices

and using modern library support — remains error-prone.

A number of program analysis approaches aim to prevent or mitigate string-related defects;

examples include static bug detectors and automated testcase generators. Traditionally, this work

has relied on built-in algorithms to reason about string-manipulating code. This arrangement is

suboptimal for two reasons: first, it forces researchers to re-invent the wheel for each new analysis;

and second, it does not encourage the independent improvement of domain-specific algorithms for

handling strings.

In this dissertation, we present research on specialized decision algorithms for string constraints.

Our high-level approach is to provide a constraint solving interface; a client analysis can use that

interface to reason about strings in the same way it might use a SAT solver to reason about binary

state. To this end, we identify a set of string constraints that captures common programming

language constructs, and permits efficient solving algorithms. We provide a core solving algorithm

together with a machine-checkable proof of its correctness.

Next, we focus on performance. We evaluate a variety of datastructures and algorithms in a

controlled setting to inform our choice of each. Our final approach is based on two insights: (1)

string constraints can be cast as an explicit search problem, and (2) to solve these constraints, we can
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instantiate the search space lazily through incremental refinement. These insights lead to substantial

performance gains relative to competing approaches; our experimental results show our prototype to

be several of magnitude faster across several published benchmarks.


