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Abstract
This paper presents a deployment methodology
for sensor field localization systems. To de-
ploy our ultrasound based localization system,
we first create a simulation environment that cap-
tures real-world ranging characteristics. The lo-
calization system can then be designed against
the ranging noise of a particular environment and
ranging implementation. The simulation environ-
ment can also be used to estimate the localization
accuracy and probability of successful localiza-
tion before the deployment actually takes place.
We evaluate this methodology through the empir-
ical deployment of a 49 node, 8 hop network in
which the system achieves an average accuracy
of about 50cm.

1 Introduction
This paper presents a sensor field localization de-
ployment, in which nodes in an ad-hoc wireless
sensor network locate themselves with respect to
a fixed coordinate system. Most localization sys-
tems such as GPS and Cricket [6, 11, 2, 4] use
single-hop localization in which each node must
be directly connected to at least several anchor
nodes with known locations. In a sensor field,
however, most nodes are not in contact with any
anchor nodes. Sensor fields must use multi-hop
localization in which each node obtains informa-
tion about anchor nodes through its neighbors.
Designing algorithms for multi-hop localization
is an active area of research.

In this paper, we do not present a new local-
ization algorithm. Instead, we use an existing
algorithm and explore the process of taking it
through the stages of hardware design, software
implementation, and final deployment. We pro-
vide an empirical evaluation of many ideas in the
literature, serving as a proof-of-concept in some
cases and revealing tacit assumptions or unex-
pected problems in others.

To estimate the distance between nodes we use
ultrasonic ranging for high accuracy and a con-
ical reflector to achieve omni-directionality in a
plane. To perform localization, we created a

completely distributed implementation of the Ad-
hoc Positioning System (APS) DV-distance algo-
rithm. In this paper we describe both implemen-
tations.

The principle contribution of the paper, how-
ever, is not the implementation of the system but
the iterative methodology we use to deploy it.
The framework of our deployment methodology
is a realistic simulation environment. We found
the typical simulation environment for localiza-
tion to be very different from the real deploy-
ment environment. We designed a data collec-
tion technique that captures a complete profile of
the physical environment and the particular rang-
ing implementation. These profiles are then used
to create simulation environments that accurately
capture real-world ranging characteristics.

Given a realistic simulation environment, we
can design the system against the particular noise
characteristics of our environment and ranging
implementation. In our case, outliers and ranging
loss were identified as dominant sources of error
in our environment that are not captured in tradi-
tional ranging models. In simulation, we could
specially design a filter for the outlier distribu-
tion and implement what we call range sharing to
ameliorate the effects of loss. The realistic simu-
lation environment can be used to iteratively eval-
uate and redesign these techniques.

After the system is designed, our realistic sim-
ulation environment is used again to estimate the
probability of successful localization in a given
deployment scenario. This pre-deployment veri-
fication step can help identify, for example, the
correct network density and number of anchor
nodes that should be used without requiring days
of trial and error in the field. These deployment
parameters can be tuned to balance deployment
costs with localization accuracy and probability
of successful localization. This will be increas-
ingly important for large or mission critical de-
ployments that can only be deployed once.

In this paper we follow this methodology
through an actual deployment and evaluate where
it successfully improved the deployment process
and where it did not. The deployment itself is
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also compared with our simulation environment
to evaluate how well the simulations predict real-
world behavior of a localization system. The fi-
nal deployment was a 49 node network deployed
over a 144 square meter (1600 square foot) area
and localized all nodes with a median error of
.53m (1.7 feet).

In Section 2 we describe the hardware and soft-
ware implementation. In Section 3 we describe
the process of collecting empirical profiles of the
environment and ranging implementation and us-
ing them for simulation. In Section 4 we describe
the process of designing the system against spe-
cific environmental sources of error. In Section 5
we describe pre-deployment verification in which
we estimate localization error the likelihood of
successful localization before deployment. In
Section 6 we detail unexpected problems encoun-
tered during deployment. In Sections 7 and 8 we
present the results and analysis of the final de-
ployment.

2 System Implementation
The implementation of this system builds upon
and improves some of the best hardware designs
and algorithms from several existing systems to
create a unified system that is specially tailored
to this localization problem. In this section, we
detail our implementation and explain our moti-
vations for each design decision. The focus of
this paper, however, is neither the ranging and
localization techniques used nor their implemen-
tations but rather the methodology presented in
following sections that we use to actually bring
these techniques to deployment.

2.1 Ultrasonic Ranging
Our ultrasound hardware combines and improves
ideas from several ultrasound implementations.
Our ultrasonic transducer circuitry is derived
from that of the Medusa node [14], except that
we add a switchable circuit so that a single trans-
ducer could be used to both transmit and receive.
Our nodes measure ultrasonic time of flight by
transmitting the acoustic pulse simultaneously
with a radio message so that receivers can mea-
sure the time difference on arrival (TDOA) as de-
scribed in Cricket [11]. When the transducers are
face to face, our implementation can achieve up
to 12m range with less than 5cm error. Compara-
ble implementations were able to achieve propor-
tionally similar results of 3-5m range with 1-2cm
accuracy [14, 13, 8]. The differences in magni-
tude are due in part to our design decision to re-
duce the center frequency of the transducer from
the standard 40kHz to just above audible range
at 25kHz, which increases both maximum range
and error.

Ultrasound transducers are highly directional,
and small variations from a direct face to face ori-
entation can have large effects on error and con-

Figure 1: Sensor Node The white enclosure con-
tains a Mica2Dot and battery and supports a re-
flective cone above the ultrasonic transducer that
protrudes from the top.

nectivity. Two solutions have been proposed to
use ultrasound in multi-hop networks: aligning
multiple transducers outward in a radial fashion
[13] or by using a metal cone to spread and col-
lect the acoustic energy uniformly in the plane of
the other sensor nodes [8]. We implemented the
latter solution as shown in Figure 1. In this con-
figuration, our nodes achieve about 5m range and
90% of the errors are within 6.5cm. A compara-
ble implementation achieved about 3m range [8].

The ultrasound transducer is connected to an
Atmel Atmega8 1MHz microcontroller which is
used for both transmitting and receiving ultra-
sound signals. The output of the transducer is
wired to the analog comparator on the micro-
controller for detecting incoming signals through
simple threshold detection which can be con-
trolled in software through a digital potentiome-
ter. The input of the transducer is wired to a
PW line on the Atmega8, which directly keys the
25KHz signal. Both the transducer and the mi-
crocontroller are mounted as a separate board at-
tached to the Mica2Dot [5], which consists of a
ChipCon CC1000 FSK 433Mhz radio and an At-
mel Atmega128 4MHz microcontroller. Because
the radio and ultrasonic transducer are controlled
by different microcontrollers, a single interrupt
line is used for precise time synchronization be-
tween them. The two microcontrollers exchange
timing and ranging information through an I2C
communication bus. The schematics for this de-
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sign are freely available at [1].

2.2 Localization
For localization we used the Ad-hoc Position-
ing System’s (APS) DV-distance algorithm [9],
which is representative of a large class of dis-
tributed localization algorithms that use shortest-
path [16, 12, 20] or bounding-box [19, 15] ap-
proximations. APS uses a distance vector algo-
rithm to approximate the shortest path distance
through the multihop network from each node to
each of the anchor nodes. Each shortest path dis-
tance approximates the true distance to the an-
chor, reducing the multi-hop localization prob-
lem to a single-hop localization problem with a
more complex range estimate. The approximate
distance to each anchor is then used with the an-
chor node positions to triangulate the position of
each node using linear least-squares.

APS has been shown to yield comparable re-
sults to the other distributed localization algo-
rithms [7] and, intuitively, all of these algorithms
suffer from the same two sources of error: they
will overestimate distances in sparse networks
and underestimate distances in the face of large
ranging noise.

In our implementation, the APS algorithm runs
in three fully decentralized phases. When the an-
chor nodes are given their positions, they trigger
a ranging phase in which all nodes estimate the
distance to each of their direct ranging neighbors.
The anchors then initiate a shortest path phase,
in which anchors initiate a tree broadcast, allow-
ing each node to determine its shortest path to
each anchor in a distance vector manner. When
all broadcasts are complete, each node estimates
its position in the localization phase. After the
anchor nodes were given their positions, the en-
tire process was automated with no human inter-
vention or central computer and completed in less
than five minutes for each deployment. All rang-
ing estimates, shortest paths and estimated loca-
tions were stored in RAM on the nodes and were
collected by an automated script after each run.

3 Generating Realistic Simulations
In traditional simulation, data is generated from a
parametric function. For example, ranging noise
is often modeled as Gaussian noise with the func-
tion N (dij , σ) and connectivity is modeled as
a Unit Disk using the inequality dij ≤ dmax.
For traditional simulation to be meaningful, the
model parameters dmax and σ must be estimated
from empirical ranging data. The typical data
collection technique for ranging is to place a
transmitter and receiver at several known dis-
tances and measure the response [18, 10, 13].

However, we found that this commonly used
simulation technique yields optimistic predic-
tions of how well the localization system will ac-
tually perform; we have observed true deploy-
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Figure 2: Error Model Evaluation The black
dots with numbers are the true node positions and
the “X”s are the anchor nodes. The dark arrows
show the localization error vectors when using
simulated ranging data with 5m maximum range
and 20cm Gaussian noise. The light arrows show
the errors when the same algorithm is executed
using empirical data with similar characteristics.

ments to yield accuracy four to five times worse
than predicted by simulation. Figure 2 compares
the errors in simulation resulting from data gen-
erated by parametric functions versus empirical
data, using the same algorithm on the same topol-
ogy. Nodes could localize with an average error
of only about 35cm with parameterized ranging
error but saw almost 300cm error with empirical
data.

3.1 Statistical Sampling
We developed an alternative simulation technique
based on statistical sampling where we generate
data for simulation by randomly drawing mea-
surements from an empirical data set. Define
the distribution M(δ, ε) to be the empirical distri-
bution of all observed ranging estimates for dis-
tances in the interval [δ− ε, δ + ε]. We generate a
ranging estimate d̂ij for simulation by using the
error of a random sample from M(dij , ε). For
example, if ḋ is the empirical estimate selected
from M(dij , ε), then

d̂ij = dij + (ḋ − ḋa) (1)

where ḋa is the actual distance at which ḋ was
measured. Because ḋ ∼ M(dij , ε), the simu-
lation is using empirical distributions for signal
noise and connectivity as long as M(dij , ε) ac-
curately represents ranging characteristics at dij .
The set M(δ, ε) can include ranging failures,
which are instances when a pair of nodes failed
to obtain a ranging estimate. Ranging failures are
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Figure 3: Data Collection a) This specially generated topology with 25 nodes measures 300 different
distances with at least 1 distance every .025m between 0.4m and 5.2m. b) A histogram of the distances
measured.

necessary to correctly model ranging connectiv-
ity.

3.2 Empirical Profiling
The challenge in using this sampling technique
is to collect ranging error and connectivity data
with a high enough resolution so that small val-
ues of ε can be used. For example, if we want
to use ε = 2.5cm and ultrasound ranging has a
maximum range of 10m, we must take empiri-
cal ultrasound measurements at 400 different dis-
tances. Instead of measuring each distance with
a single pair of nodes, all measurements can be
taken at once with

√
400 = 20 nodes in a topol-

ogy where each pair of nodes measures a differ-
ent distance. By adding a few additional nodes,
we can get multiple pairs at each distance. We
generated such topologies using rejection sam-
pling, i.e., we generated thousands of topologies
until one of them exhibited the desired properties.
For example, we used the topology in Figure 3.a,
which required 25 nodes to obtain 2.5cm reso-
lution over 5m, to characterize ultrasound. Fig-
ure 3.b shows the distribution of the distances that
are measured by that topology.

All nodes are placed at random orientations in
this topology and each node transmits 10 times
in turn while all other nodes receive. To re-
move the bias of each distance being measured
by only two pairs of nodes (the reciprocal pairs
A/B and B/A), we repeated this procedure five
times with different mappings of nodes to the
topology locations. These mappings were gen-
erated using rejection sampling to ensure that the
same distances were not always measured by the
same pairs. The procedure generated 100 to-
tal measurements at each distance with 10 dif-
ferent transmitter/receiver pairs. Therefore, with
ε = 0.05m (two inches) the set M(δ, ε) is likely

to include 400 empirical measurements
Unlike the conventional pairwise data collec-

tion technique described above, the empirical
measurements in M(δ, ε) are taken with dozens
of transmitter/receiver pairs, capturing a broad
spectrum of node, antenna, and orientation vari-
ability. Furthermore, the measurements are taken
over several different paths through the environ-
ment, capturing variability due to dips, bumps,
rocks or other environmental factors. Finally,
this technique captures connectivity characteris-
tics by fixing the number of transmissions and
measuring the number of readings at each dis-
tance. In contrast, the conventional pairwise tech-
nique described above requires the experimenter
to take readings at every possible distance, hid-
ing the degradation of ranging connectivity with
distance.

Thus, the data generated by this data collec-
tion technique represents a complete empirical
profile of the physical environment, the rang-
ing implementation, and the interaction between
the two. Because of the high resolution of
the data, this empirical profile can be used to
generate a very accurate simulation environment
through the statistical sampling techniques de-
scribed above. The rejection sampling algorithms
required on average twelve hours to compute the
topology and node mappings. Each data collec-
tion process required approximately 6 hours to
complete, with the bulk of the time needed for
data collection and to precisely measure out the
special topology.

4 Designing for Real-world Errors
No ranging data will exhibit perfectly disk-like
connectivity or gaussian noise. Given a simula-
tion environment that can capture the subtleties
of our environment and ranging implementation,
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we can design our localization system against
the ranging characteristics that fall outside of our
parametric model of ranging. Furthermore, we
can use simulation to design and evaluate tech-
niques that are specifically tailored to our envi-
ronment.

In the environments we tested, ranging char-
acteristics differ in many ways from the theoreti-
cal ranging models but only a few will affect our
localization algorithm. The APS localization al-
gorithm in general is particularly sensitive to two
conflicting forces. On one hand, the shortest path
between a node and an anchor is almost never
a straight line, and the zig-zag nature of these
paths serves to lengthen them. On the other hand,
the Bellman-ford algorithm selectively chooses
range estimates with negative errors, so as the
magnitude of errors increases the shortest path
estimates become shorter. Whether the shortest
path estimates underestimate or overestimate the
true distances depends on the balance between
the denseness of the connectivity graph and the
amount of error in the ranging estimates.

Given this, the two aspects of our environmen-
tal noise that predominantly affect the APS algo-
rithm are outliers and loss. Outliers are ranging
estimates with error well outside the mean. This
serves to shorten the shortest paths beyond that
predicted by theoretical ranging models. Loss is
the failure of two nodes closer than the maximum
range of ultrasound to generate a distance esti-
mate. This reduces connectivity and increases the
zig-zag nature of the shortest paths.

In this section, we discuss the analysis of out-
liers and loss and the techniques we use to ame-
liorate their effects on the APS algorithm. Fig-
ure 4 depicts the average localization accuracies
at several network densities. The top line indi-
cates error when the bare APS algorithm is sim-
ulated against an empirical profile. The two mid-
dle lines indicate error when the algorithm is aug-
mented to handle outliers and loss, respectively.
The bottom line indicates error when APS is sim-
ulated against theoretical ranging data derived
from a parametric function.

4.1 Outliers
The normality plot in Figure 5 shows that our
ultrasonic ranging data has heavy tails and both
positive and negative outliers 1. Figure 6 shows
a time series of ranging estimates between two
nodes that are one foot apart. The negative out-
liers are false positives; they represent detections
of ultrasound before the ultrasound actually ar-
rived, possibly due to random noise such as keys
jingling or a car door slamming. The positive out-
liers are detections well after the signal has ar-
rived, possibly caused by a low signal to noise
ratio.

1in a normality plot, if the data is Gaussian distributed it
will fall in a straight line
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Figure 4: Effect of Density median localization
error from 100 simulations on a 12m x 12m area
at each of four network densities. Error bars indi-
cate upper and lower quartiles of error. The four
lines from top to bottom represent simulation on
empirical data, empirical data with medianTube
filtering, empirical data with range sharing, and
theoretical data drawn from an error model of 5m
range and 10cm error.

While the mean range estimate is sensitive to
outliers, the median is not. One way to eliminate
outliers is to take multiple samples and to elim-
inate all readings too far from the median. Be-
cause time of flight has a bias toward having pos-
itive errors, we choose the minimum value that
falls within a predefined range of the median to be
the point estimate of the entire time series. This
non-linear filter is thus designed specifically for
the outlier distribution observed with our ranging
implementation.

We call this filter medianTube and have found
through testing in simulation that a tube width of
about 10 centimeters performs significantly bet-
ter than a simple median filter. The maximum er-
ror is reduced from nearly 2 meters to about 0.4
meters, and the upper quartile of the error is about
10 centimeters. Both the averaged and filtered es-
timates are shown in Figure 7, and the effect of
medianTube on localization is shown as the sec-
ond line from the top in Figure 4. MedianTube
reduces average localization error over all densi-
ties by approximately 20cm, beginning to close
the gap between the theoretical simulation results
and the empirical simulation.

4.2 Loss
In our environment and with the APS algorithm,
loss is a much more significant source of local-
ization error than outliers. Figure 8 shows that
the probability of receiving a ranging estimate de-
creases over distance, as measured in four differ-
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Figure 7: MedianTube Results a) Distance estimates after averaging 10 readings. b) Distance esti-
mates after running medianTube on 10 readings.
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ent environments: grass, pavement, carpet, and
free space. This loss can reduce network con-
nectivity by a factor of two or more and there-
fore has a dramatic effect on the APS algorithm.
Furthermore, the differences between the curves
indicates that APS will perform differently in dif-
ferent environments.

To ameliorate the effects of loss, Calamari in-
troduces a phase of range sharing between neigh-
bors. After all ranging has completed, each node
transmits its set of distance estimates to all neigh-
bors. If two nodes already have distance esti-
mates to each other, they both use the minimum
of the two estimates since the higher one is more
likely to be an outlier. If only one of the two
nodes has an estimate to the other, both nodes
use the same estimate. Range sharing increases
ranging connectivity by leveraging the duplicated
ranging between all pairs of nodes. Evalution in
simulation shows that this asymmetrical sharing
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Figure 6: MedianTube Filter The medianTube
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protocol performs better with our particular noise
distribution than more straight forward averaging
of distance estimates.

Range sharing alleviates the effect of loss with
only one or two extra messages per node. The
effect of range sharing is more pronounced than
the effect of outlier filtering, which speaks to the
sensitivity to loss of this particular localization
algorithm. As shown in Figure 4, range shar-
ing reduces the error of empirical simulation re-
sults to just above that of theoretical model-based
localization. More importantly, the variation in
errors after range sharing is up to three times
smaller than results with mere outlier filtering.
Thus range sharing is a critical step in achieving
predictability.

Instead of using an upper bound to characterize
range, we can use what we call effective range,
defined as

effective range ,

∫ rmax

r=0

Π ∗ r2 ∗ p(S|r)

where p(S|r) is one minus the probability of loss
at distance r. This definition is essentially an in-
tegral over the probability of obtaining a neighbor
at a given distance. This metric is derived from
the intuition that it is the total number of neigh-
bors or node degree that influences localization,
not the distance of the farthest neighbor.

5 Pre-deployment Verification
Deployments are very costly and time consum-
ing. Even for a small deployment, we would like
to estimate the probability of success before de-
ployment actually takes place. This is increas-
ingly important for extremely large networks or
mission critical situations that can only be de-
ployed once.

Sensor networks are often deployed in pseudo-
random patterns such as a grid formation with
Gaussian noise on each grid location or uni-
formly at random over a square region. Because
random distributions can result in very diverse
topologies, some of the resulting networks will
localize well while others will not. We can pre-
dict the probability that a deployment will suc-
ceed by generating hundreds of topologies from
the same random parameters. On each topol-
ogy, we then simulate the localization algorithm
against the empirical profile of the deployment
environment. If, for example, 60% of the topolo-
gies localize to the desired level of accuracy, we
say that the deployment has a 60% chance of suc-
cess.

This simulation technique can also be used to
choose deployment parameters to maximize lo-
calization accuracy and the likelihood of success-
ful localization. For example, in Section 7, we
will need to localize a network over a 13x13m
area to an accuracy of about 0.5m. These speci-
fications are suitable for applications such as the
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Figure 9: Anchor Density Effect Simulations
on empirical data reveal that, for networks of 50
nodes in a 12m x 12m area, more than 4 anchors
nodes do not significantly improve results.

Pursuer-Evader Game, in which the sensor net-
work assists an autonomous robot in pursuit of
another robot who’s position is being tracked by
the network [17]. Before deployment, we need
to determine how many nodes to deploy and how
many anchor nodes are required.

Figure 4.a summarizes the results of our sys-
tem simulated on 30, 40, 50, and 60 node net-
works against an empirical profile of ranging on a
paved surface. Each point represents the median
error of 100 simulations and the error bars indi-
cate upper and lower quartiles of error. Results
indicate that we need 50 nodes to yield approxi-
mately a 75% chance of achieving 0.5m median
error. Similarly, Figure 4.b summarizes the re-
sults of simulations with 3, 5, 7, and 9 anchor
nodes. Results indicate that localization accuracy
does not improve with more than 4 anchor nodes.
These results determined the deployment param-
eters used in the deployment presented in Sec-
tion 7. Similar simulations were run to determine
the best environment and deployment pattern for
the deployment.

It is important to note that simulations against
ranging data generated from theoretical models
yielded optimistic predictions of system perfor-
mance. For example, from Figure 4.a we see that
theoretical data would suggest that we deploy our
system with only 30 nodes to achieve 0.5m accu-
racy. Actually doing so would have resulted in
1.25m error, 150% more than expected.

6 Unexpected Problems
While our simulation environment captures real-
word ranging characteristics, it does not capture
all aspects of a deployment. In this section we de-
scribe two problems we encountered during the
deployment that were not predicted by our simu-
lation.
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Figure 10: Shadowing Nodes A and B both
transmit with a time difference of ∆t. When
|∆t| < 17, the messages overlap but a third node
can still hear B’s message with almost 100% re-
liability.

6.1 Ranging Collisions
Raw ultrasound pulses are not differentiable and
collisions between them cannot be detected. Sev-
eral techniques have been proposed to avoid rang-
ing errors during collisions. For example, each
node could encode a signature in the ultrasound
pulse with frequency or amplitude modulation,
allowing the detection of ultrasound collisions
and even allowing the reception of multiple ultra-
sound signals simultaneously, as seen in [3]. An-
other solution is to envelope the ultrasound pulse
in a radio message such that a collision between
ultrasound signals can be detected through the
collision in radio messages. This technique, first
proposed in [11] and used in many ultrasound
ranging implementations since, relies on the fact
that no messages are received during a radio col-
lision, in which case all ultrasound information is
ignored.

Calamari initially employed the second of
these techniques because of its simplicity. How-
ever, collisions were still a problem because with
the FSK radio used on the mica2dot, radio colli-
sions are not always detectable; when two nodes
transmit simultaneously, a third node will often
receive one message but not the other, even if
both are received with almost the same signal
strength. In other words, with FSK radios, RF
collisions do not always result in corrupted pack-
ets. This phenomenon is known as capture as de-
scribed in [21] and is possible though very un-
common in ASK radios such as those used in
[11].

To test the extent of this phenomenon, we per-
formed an experiment in which three nodes A, B,
and C were approximately one meter from each
other. We monitored the reception of messages
at C while both nodes A and B would trans-
mit with a time difference of ∆t. ∆t was var-
ied from -20ms to 20ms. As shown in Figure 10,
the messages from both nodes are received when
|∆t| > 17ms, the length of the packet. When

|∆t| < 17ms the packets collide and neither
packet should be expected to be received. How-
ever, B’s messages are still received at C with al-
most 100% reliability. This means that B’s mes-
sages are being received during a collision with
A’s messages.

Capture presents a serious problem for detect-
ing ultrasound collisions. We implemented an
application-level MAC protocol in which each
node sent ranging messages in batches of twenty
with a small random delay between each mes-
sage. Thus, the probability that every message in
a batch from one node collides with every mes-
sage in a batch from another node decreases ex-
ponentially as the length of the batch grows. This
allows receiving nodes to discard data from rang-
ing collisions: any node that hears messages from
two overlapping batches can discard all ranging
messages from both batches. Furthermore, if a
node hears another node sending a ranging mes-
sage, it backs off for the entire duration of the
batch, not just the ranging message. With this
technique, all messages toward the end of each
batch can usually be sent without any collisions.

6.2 Correlated Errors

One limitation of the simulation techniques de-
scribed in Section 3 is that it does not capture the
possibility of correlated errors. For example, tree
in the center of the network or a dead or error
prone node would cause ranging errors that are
all correlated in space. A period of strong wind
or rain would cause ranging errors that are corre-
lated in time. Correlated errors are not captured
in our data collection process and, even if they
were, the correlations are not accounted for by
our statistical sampling process used in simula-
tion. Because we are deploying in a open space
at a known time, we expected this limitation to be
inconsequential.

Our final deployment of 49 nodes, however,
was large enough that a 5% hardware failure rate
became significant. Of the 49 nodes in the de-
ployment, only 46 of them were fully functional.
Some nodes would always estimate a distance of
zero to all other nodes, even those on the other
side of the network. A single such node would
wreck havoc in the shortest path algorithm and
all such nodes were turned off. Other nodes did
not receive any ranging estimates from any other
nodes, leaving holes in the connectivity graph
and increasing all shortest path estimates. Incor-
porating dead and erroneous nodes into the sim-
ulation might have suggested using higher den-
sity networks to compensate for dead nodes, and
any node with suspicious ranging estimates could
have been designed to simply cut itself out of
the network. This is currently reserved for future
work.
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Figure 12: A Single Deployment The top graph is a kernel smoothing of the error distribution and the
bottom graph shows the actual node positions with black dots and their location errors as arrows. The
anchor nodes are indicated by “X”’s and the gray lines indicate ranging connectivity. Nodes 33, 16,
and 43 were dead nodes. The median error for this run was 47.8cm.
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Figure 13: Predictions and Observations The ’+’s and ’x’s indicate observed average error before
and after range sharing, respectively. The three curves represent the errors distributions seen in simu-
lation using 1) empirical data with medianTube 2) empirical data with range sharing and 3) theoretical
ranging data generated from a model with 5m maximum range and 10cm noise.
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Lower Quartile (cm) Median (cm) Upper Quartile (cm)
model-based prediction 11.0 20.6 37.7
medianTube prediction 43.1 69.7 107.3
medianTube observed 42.6 85.2 140.8
range sharing prediction 17.8 29.6 45.4
range sharing observed 32.5 53.4 86.8

Table 1: Localization Errors This table presents the localization error quartiles predicted by theoret-
ical ranging data with 5m maximum range and by empirical data with and without medianTube and
range sharing. The error quartiles observed during the 8 deployments, both with and without range
sharing, are shown in bold.

Lower Quartile (cm) Median (cm) Upper Quartile (cm)
model-based prediction 7.5 17.7 32.1
medianTube prediction 11.9 38.9 82.2
medianTube observed 18.5 45.5 106.0
range sharing prediction 5.1 12.8 28.8
range sharing observed 11.0 30.5 67.5

Table 2: Shortest Path Errors This table presents the shortest path error quartiles predicted by theo-
retical ranging data with 5m maximum range and by empirical data with and without medianTube and
range sharing. The error quartiles observed during the 8 deployments, both with and without range
sharing, are shown in bold.

Figure 11: Final Deployment The final deploy-
ment involved 49 nodes over a 13x13m area on a
paved surface.

7 Experimental Results
We performed a real deployment to evaluate how
well the empirical simulation techniques could
predict the actual outcome of a real deployment,
and to test whether the deployment methodolo-
gies that we were using actually help produce
localization results that meet our application re-
quirements.

To avoid doing this single deployment test on
an especially good or bad topology, we gener-
ated 100 random topologies and chose the one
that yielded median average error in simulation.
These topologies were generated for network
with 49 nodes and 4 anchors in a 13x13m grid
with random noise added to the grid. The hop

count of the longest shortest path in the selected
topology network was 8, although longer paths
appeared in the real deployment.

The main deployment took place outdoors in
the parking lot shown in Figure 11 under weather
conditions similar to those in which the origi-
nal ranging data was collected. After we mea-
sured the topology and placed the nodes, we ex-
ecuted the localization system on the network
eight times, each time calculating shortest paths
and positions both with and without range shar-
ing. The sixteen final results are shown in Fig-
ure 13 against a backdrop of prediction made by
simulations with several different types of rang-
ing data. The results of a single run after range
sharing are shown in Figure 12 for closer analy-
sis.

The median of the observed deployment er-
rors before and after range sharing are 85cm and
53cm, respectively. Using this same topology,
100 simulations predicted errors of 70cm and
30cm. While a strong correlation is evident, the
predicted statistics do not match the observed be-
havior exactly. While this could be an artifact
of the small sample size, it could also be an in-
dication that there are still factors that are unac-
counted for in the simulations.

A deeper analysis reveals that the loss rates in
the deployment are slightly higher than those in
the simulations. Before the range sharing, the
median degree (number of neighbors) of each
node in simulation and in the real deployment
were 7 and 5, respectively. Over all, the simu-
lated topologies had an average of 362 edges in
the ranging connectivity graph while the real de-
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ployments only had 271. After the range shar-
ing, the node degrees were bumped up to 10 and
7, respectively. Consistency checking added an
average total of 139 new edges to the simulated
connectivity graphs but only 78 to those in the
real deployment.

The discrepancy in connectivity seems to have
been the cause of the difference between simula-
tion predictions and empirical observation. In-
deed, the median length of the shortest paths
in the true deployments was one hop longer
than that of the simulations, causing a sharp in-
crease from the predicted 13cm median shortest
path error to an observed 31cm. This is likely
to be at least partially a result of the fact that
three of the nodes in the final deployment were
dead. Nonetheless, a discrepancy of only 20cm
between predicted and observed localization is
much smaller than we would have seen with tra-
ditional simulation techniques.

8 Discussion

In this paper we present a deployment process
used for an ultrasound-based localization system.
We take an existing localization algorithm and
carry it through the steps of hardware implemen-
tation, distributed software implementation and
final deployment. The framework for our deploy-
ment methodology is a combination of new data
collection and simulation techniques that make it
possible to simulate a localization system in the
context of real-world noise. This enables the de-
sign and evaluation of a system with respect to
the noise of a specific environment. Furthermore,
these simulations can be used to choose deploy-
ment parameters and estimate the probability of
successful localization before the deployment ac-
tually takes place. This is especially important
for very large or mission critical deployments in
cases where field experimentation is not possible.

While we evaluate these simulation techniques
in the context of the deployment of an ultrasound-
based localization system, the scope can easily be
extended to other contexts. The techniques ex-
tend in a straightforward way to other ranging
modalities and would also extend to algorithm
evaluation in non-deployment contexts. Most lo-
calization algorithms today have only been tested
in traditional simulation environments and it is
difficult to know how well the simulations pre-
dict the behavior of the algorithm in the face of
real-world noise. The techniques presented in
this paper can be used to evaluate and compare
the many localization algorithms in the literature.
Similarly, most networking simulations today use
theoretical radio models to model radio collisions
and connectivity. These simulations could bene-
fit from empirical profiling of RF communication
channels in outdoor environments.
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