Δενοτατιοναλ Σεμαντικοσ
(Denotational Semantics)

Formal Semantics

What does \(y := f(x) + x \) mean?

- \(y \) is assigned the value of \(f(x) + x \)
- \(y \) becomes a pointer to the result of \(f(x) + x \)
- \(f(x) \) may or may not have side effects
- statement is undefined if types aren't equivalent
- statement is undefined if types aren't compatible
- etc

- Need formal semantics to make meanings of programs unambiguous.
Utility of Formal Semantics

- Handy for:
 - language design
 - proofs of correctness
 - language implementation
 - reasoning about programs
 - providing a clear specification of behavior

Formal Semantics (continued)

Tennent: "... a precise specification of the meanings of programs for use by programmers, language designers and implementers, and in the theoretical investigations of language properties."

- Three major approaches:
 1) Denotational: define functions that map syntactic structures into mathematical objects (e.g. numbers, truth values & functions)
 (Algebraic) - considered a component of denotational
 2) Operational: formal virtual machine description (VDL, H-Graphs)
 3) Axiomatic: development of axioms defining meanings of classic statement types. (Dijkstra, Hoare)
Uses

- Denotational: Ashcroft and Wadge argue best use is language design. (as opposed to retrofit, as attempted with Ada). Used some for formal verification.

- Operational: Best for implementation description.

- Axiomatic: Most often used for formal verification.

Axiomatic Semantics

Axioms:

- **null:** \{P\} skip \{P\}
- **assignment:** \{P_E^x\} x:= E \{P\} where P_E^x is the assertion formed by replacing every occurrence of x in P by E.
- **alternation:** \{P ^ B \} S_1 \{ Q \}, \{P ^ \neg B \} S_2 \{ Q \}
 - \{P\} if B then S_1 else S_2 \{ Q \}
- **iteration:** \{P ^ B \} S \{ P \}
 - \{P\} while B do S \{P ^ \neg B\}
- **composition:** \{P_1\} S_1 \{P_2\}, \{P_2\} S_2 \{P_3\}, \ldots, \{P_n\} S_n \{P_{n+1}\}
 - \{P_1\} begin S_1, S_2, \ldots, S_n end \{P_{n+1}\}

rules of inference

a: antecedent
c: consequent
Axiomatic Semantics

More axioms:

- **consequence:** \(\{ P \} S \{ Q \}, \quad P \vdash_{ax} P \& Q \vdash_{ax} Q \)
 \(\{ P \} S \{ Q \} \)

- **await:** \(\{ P \land B \} S \{ Q \} \)
 \(\{ P \} \) await B then \(S \{ Q \} \)

- **cobegin:** \(\{ P \} S_1 \{ Q_1 \}, \ldots, \{ P \} S_n \{ Q_n \} \) are interference free
 \(\{ P \land \ldots \land P \} \) cobegin \(S_1 \// \ldots \// S_n \)
 \(\) coend \(\{ Q_1 \land \ldots \land Q_n \} \)

Uses: Dijkstra’s weakest preconditions

Temporal logic

Using Axiomatic Semantics

Prove noninterference in the following:

\(\{ x = 0 \text{ and } y = 0 \} \)

S: cobegin

- **s1:** await true then \(y := y + 1 \)
 \(// \)

- **s2:** await true then \(x := x + 2 \)
 \(// \)

- **s3:** await \(y > 0 \) then \(x := x + y \)

coend

\(\{ x = 3 \text{ and } y = 1 \} \)
Denotational Semantics

- Assigning denotations to language constructs
- Utilizes domains and functions over domains
 - domains are sets with properties that allow us to deal with questions regarding
 - recursive definitions of functions (over domains)
 - recursive definitions of domains

 e.g. consider (recursive function over domain)

 \[f: \text{Num} \rightarrow \text{Num} \quad \text{-- f: maps numbers into numbers} \]

Candidates f’s

- Two candidate "defining" functions for f:

 (i) \[fx = (fx) + 1 \]
 (ii) \[fx = fx \]

- Assuming Num = \{0,1,2,...\}, there is no f for (i) and every f satisfies (ii).

- In contrast:

 (iii) \[fx = (x=0) \rightarrow 1, \quad x \neq f(x-1) \]

 uniquely defines f as factorial
Scott’s Theory

- Scott's (1969) theory of domains ensures every definition is good by:
 - requiring all domains to have an "implicit structure." This requirement guarantees that all equations (e.g. i, ii and iii) have at least one solution.
 - providing direction, using implicit structure, for choosing an "intended" solution from the solutions guaranteed by (a).
 - based on lattices and fixed point theory.

- e.g. Num consists of 0, 1, 2, ... and undefined
 - Num⊥ is called a lifted domain

Defining Moment

- Thus,
 (i) and (ii) define f to be undefined and (iii) defines f as
 fx = x! if x=0, 1, 2, ...
 and f undefined = undefined
- Using ⊥ as a value is an alternative to using partial functions.
- With ⊥, all elements in domain have a value.
 - e.g. f undefined = undefined

- Scott's theory applies as well to recursive definitions of domains.
 - e.g. lists defined in terms of lists
On Defining a Language's Denotational Semantics

Three components:
• Abstract syntax (syntactic domain)
 – list of syntactic categories
 – list of syntactic clauses (a mapping onto immediate constituents)
• Semantic Domain (Semantic Algebras)
 – domain equations: provide framework for defining denotations
 – sets that are used as value spaces in PL semantics
• Semantic functions
 – functions that define denotation of constructs
 – semantic clauses

Terms

• $\lambda x.e$: Church's lambda notation (seen before)
• $\lambda x.e : A_\perp \rightarrow B_\perp := (\lambda x.e)\perp = \perp$

 $(\lambda x.e)a = [a/x]e$ for $a \neq \perp$

 "proper element"

 – $\lambda x.e$ is e.g. of a strict operation
 – non-strict operations allow \perp to be mapped to proper elements

• (let $x = e_1$ in e_2) is a syntactic substitute for $(\lambda x.e_2)e_1$

• diverge: statement that goes into an infinite loop
More Terms

- $x \rightarrow e_1 \mid e_2$: syntactic form for conditional

e.g. $C[\text{If } B \text{ THEN } C_1 \text{ ELSE } C_2] = \lambda s. B[B]s \rightarrow C[C_1]s \mid C[C_2]s$

- Expressions in mini-language assumed to have *no* side effects.
 - e.g. no reads in expressions.

- $[i \rightarrow n]s$ is a function updating expression

 $([i \rightarrow n]s)(i) = n$
 $([i \rightarrow n]s)(j) = s(j) \quad \forall j \neq i$

 - useful for reflecting effects of updating the i^{th} component of a store: i^{th} component changes; rest stays the same
 - update's signature: $\text{Id} \times \text{Nat} \times \text{Store} \rightarrow \text{Store}$

Even More Terms

- Interpretation of:

 $P[C.] = \lambda n. \text{let } s = (\text{update } [A] n \text{ newstore}) \text{ in}$

 $\text{let } s' = C[C]s \text{ in (access } [Z]s')$

 - input number is associated with identifier $[A]$ in a new store
 - then program body is evaluated
 - then answer is extracted from store at $[Z]$

 (program mapping: $\text{Nat} \rightarrow \text{Nat}_{\perp} \quad -- \perp$ is possible because diverge is possible)

- Clauses for C are all strict in use of store

- E does not modify store; expression evaluation order is not specified
 - e.g. $E[E_1]s$ plus $E[E_2]s$

- Same for Booleans
A Small Imperative Language

- Abstract Syntax

 \[
 P \in \text{Program} \\
 C \in \text{Command} \\
 E \in \text{Expression} \\
 B \in \text{Boolean-expr} \\
 N \in \text{Numeral}
 \]

 \[
P ::= C. \\
 C ::= \text{if } B \text{ then } C | \text{if } B \text{ then } C_1 \text{ else } C_2 | I := E | \text{diverge}
 \\
 E ::= E_1 + E_2 | I | N
 \\
 B ::= E_1 = E_2 | \neg B
 \]

A Small Imperative Language (cont)

- Semantic domain

 . . .

- Semantic Functions

 \[
P : \text{Program} \to \text{Nat} \to \text{Nat}_\

 P[C.] = \lambda n. \text{let } s = (\text{update}[A] \text{ n newstore}) \text{ in} \\
 \text{let } s' = \text{C[C]s in (access[Z] s')}
 \\
 C : \text{Command} \to \text{Store}_\downarrow \to \text{Store}_\downarrow

 C[C_1; C_2] = \lambda s. C[C_2] (C[C_1]s)

 C[\text{if } B \text{ then } C] = \lambda s. B[B]s \to \text{C[C]s} \mid s

 C[\text{if } B \text{ then } C_1 \text{ else } C_2] = \lambda s. B[B]s \to \text{C[C_1]s} \mid \text{C[C_2]s}

 C[I := E] = \lambda s. \text{update } [I] (E[E]s) s

 C[\text{diverge}] = \lambda s. \bot
 \]
A Small Imperative Language (cont)

- Semantic Functions (cont)
 \[E : \text{Expression} \rightarrow \text{Store} \rightarrow \text{Nat} \]
 \[E[E_1+E_2] = \lambda s. E[E_1]_s \text{plus} E[E_2]_s \]
 \[E[I] = \lambda s. \text{access}[I]_s \]
 \[E[N] = \lambda s. N[N] \]

- Boolean-expr \rightarrow \text{Store} \rightarrow \text{Tr}
 \[B[E_1=E_2] = \lambda s. E[E_1]_s \text{equals} E[E_2]_s \]
 \[B[\neg B] = \lambda s. \text{not} B[B]_s \]

N: Numeral \rightarrow \text{Nat} (omitted)

Semantic Domain

- Truth Values
 Domain \(t \in Tr = B \)
 Operations
 \(\text{true, false: Tr} \)
 \(\text{not: Tr} \rightarrow Tr \)
- Identifiers
 Domain \(i \in Id = \text{Identifier} \)
- Natural numbers
 Domain \(n \in \text{Nat} = N \)
 Operations
 \(\text{zero, one, …: Nat} \)
 \(\text{plus: Nat x Nat} \rightarrow \text{Nat} \)
 \(\text{equals: Nat x Nat} \rightarrow Tr \)
Semantic Domain (cont)

- Store
 Domain \(s \in \text{Store} = \text{Id} \rightarrow \text{Nat} \)
 Operations
 \(\text{newstore: Store} \)
 \(\text{newstore} = \lambda i. \text{zero} \)
 \(\text{access: Id} \rightarrow \text{Store} \rightarrow \text{Nat} \)
 \(\text{access} = \lambda i. \lambda s. s(i) \)
 \(\text{update: Id} \rightarrow \text{Nat} \rightarrow \text{Store} \rightarrow \text{Store} \)
 \(\text{update} = \lambda i. \lambda n. \lambda s. [i \rightarrow n]s \)