Deductive Logic

- e.g. of use: Gypsy specifications and proofs
- About deductive logic…
 - (Gödel, 1931) Interesting systems (with a finite number of axioms) are necessarily either:
 - incomplete (there are statements that can’t be proven)
 - or inconsistent (∃S such that S and ¬S can be proven true)
- Interesting systems include Presberger Arithmetic (0,1,*,+) and Peano Arithmetic (0,1,+)
- Recall: all inconsistent systems are complete
First Order Predicate Logic

• Logic programming is based on FOPL
• FOPL is complete (J.A. Robinson & resolution theorem proving)
 – "All clauses logically implied by an initial formula may be derived from
 the initial formula by the proof method."

BUT
• FOPL is undecidable
 – An attempt to prove a formula may go on forever, but there will be no
 indication when to stop without sacrificing formulae that can be proven.

⇒ completeness of FOPL is of theoretical interest, but of limited
 practicality. (completeness is predicated on there being a search strategy
 that knows when to stop a particular unproductive line of deduction.)

• Higher order predicate logics (and calculi) - ones which allow
 predicates of predicates - are not complete.

Foundations of Logic Programming

• Logic programming is based on Horn Clauses
 – In the propositional calculus all formulae can be put in conjunctive
 normal form (disjuncts connected by ∧)
 – Each disjunct can be expressed as:

 \[\text{A}_1 \lor \text{A}_2 \lor \ldots \lor \text{A}_m \lor \neg \text{B}_1 \lor \neg \text{B}_2 \lor \ldots \lor \neg \text{B}_n \]

 \[\Rightarrow \text{A}_1 \lor \text{A}_2 \lor \ldots \lor \text{A}_m \lor \neg (\text{B}_1 \land \text{B}_2 \land \ldots \land \text{B}_n) \]

 \[\Rightarrow \text{A}_1 \lor \text{A}_2 \lor \ldots \lor \text{A}_m \Leftarrow (\text{B}_1 \land \text{B}_2 \land \ldots \land \text{B}_n) \]

• interpretations:
 \[m > 1 \quad \text{Conclusions are indefinite, one or more are true.} \]
 \[m = 1 \quad \text{Horn clauses.} \]
 \[m = 1, n > 0 \quad (A \Leftarrow B_1 \land B_2 \land \ldots \land B_n) \quad \text{-- definite clause, 1 conclusion} \]
 \[m = 1, n = 0 \quad (A \Leftarrow \text{-- unconditional definite clause (fact)} \]
 \[m = 0, n > 0 \quad \text{negation of (B}_1 \land B_2 \land \ldots \land B_n) \]
 \[m = 0, n = 0 \quad \Leftarrow \text{-- the empty clause (contradiction)} \]

• In logic, all clauses can be represented as Horn Clauses...
Proof by Refutation

• An important proof method:
 - \(P \): set of axioms
 - \(Q \): clause to be proven
 - show \(P \land \neg Q \) is false by deriving a contradiction
 - i.e., assert \(\leftarrow Q \) and try to derive empty clause, which represents false.
 - In this context, \(Q \) is called a goal.

• Propositional Horn Clause Resolution (PHC Resolution)
 - In doing a refutation proof, the following general PHC resolution step can be performed:
 \[
 A_1 \Leftarrow (B_1 \land B_2 \land \ldots \land B_n) \\
 \Leftarrow A_1 \land A_2 \land \ldots \land A_m \\
 \Leftarrow (B_1 \land B_2 \land \ldots \land B_n) \land A_2 \land \ldots \land A_m \\
 \Rightarrow \text{Keep applying this until} \Leftarrow \text{is achieved.}
 \]

More PHC Resolution

• e.g. to prove \(A_2 \)

 (1) \(A_1 \Leftarrow \)
 (2) \(A_2 \Leftarrow A_1, A_3 \)
 (3) \(A_3 \Leftarrow \)
 (4) \(\Leftarrow A_2 \) -- negated goal

• proof leading to contradiction:

 (5) \(\Leftarrow A_1, A_3 \) -- apply 2 & 4
 (6) \(\Leftarrow A_3 \) -- apply 1 & 5
 (7) \(\Leftarrow \) -- apply 3 & 6

• Note: Prolog and other logic-based languages are based on this resolution proof strategy.
First Order Predicate Logic

- Predicates can have arguments: constants, variables, other functional terms.

 e.g.

 (1) a(X) ⇐ m(X)
 (2) m(X) ⇐ e(X)
 (3) e(c) ⇐
 (4) a(X) ⇐ s(X)
 (5) s(b) ⇐
 (6) ⇐ a(X)

- When we start dealing with variables, we need:

 Axiom of General Specification: A clause with logical variables is true for every set of values of the variables.

 - Supports generalizing PHC resolution into **Horn Clause Resolution (HCR)**

 - by systematically instantiating variables. ⇐ "Unification"

FOPL (cont)

- e.g.

 1) p(t)
 2) q(X) ⇐ p(X)
 3) ⇐ q(t)
 4) q(t) ⇐ p(t) (X = t) -- from (2), (3) and substitution
 5) ⇐ p(t) -- from (3) & (4)
 6) ⇐ -- from (1) and (5)

 ⊢ resolution is combination of unification and elimination in one operation.
More Proofs

- Using:
 1. \(a(X) \Leftarrow m(X) \)
 2. \(m(X) \Leftarrow e(X) \)
 3. \(e(c) \Leftarrow \)
 4. \(a(X) \Leftarrow s(X) \)
 5. \(s(b) \Leftarrow \)
 6. \(\Leftarrow a(X) \)

- with goal \(\Leftarrow a(X) \) (step (6)), we can derive:

 7. \(\Leftarrow m(X) \) -- applying (1) & (6)
 8. \(\Leftarrow e(X) \) -- applying (2) & (7)
 9. \(\Leftarrow X = c \) -- applying (3) & (8) also:
 10. \(\Leftarrow s(X) \) -- applying (4) & (6)
 11. \(\Leftarrow X = b \) -- applying (5) & (10)

Alternative Proof Strategies

- **Top Down**: what we've just seen - collecting variable bindings.
 - Start with goal and reduce into subgoals until there is only the empty subgoal.

- **Bottom up**: Combining facts with rules or rules with other rules.
Bottom Up

- Using:
 1. \(a(X) \Leftarrow m(X) \)
 2. \(m(X) \Leftarrow e(X) \)
 3. \(e(c) \Leftarrow \)
 4. \(a(X) \Leftarrow s(X) \)
 5. \(s(b) \Leftarrow \)
 6. \(\Leftarrow a(X) \)

- Combine rule (2) \(m(X) \Leftarrow e(X) \) -- combining
 with fact (3) \(e(c) \Leftarrow \) -- rule with
 yielding: \(m(c) \Leftarrow \) -- a fact yields
 combined with rule (1) \(a(X) \Leftarrow m(X) \) -- a new
 yields: \(a(c) \Leftarrow \) -- fact

- or
 Combine rule (1) \(a(X) \Leftarrow m(X) \) -- combining rules
 with rule (2) \(m(X) \Leftarrow e(X) \) -- to make a new
 yields: \(a(X) \Leftarrow e(X) \) -- rule

- -- allows us to make discoveries from known facts and rules.

Closed World Assumption

- Inability to demonstrate that something is true means that it is false.
 - assumes user made no typos and specified all things that need to be specified to properly identify true queries as true.
 - leads to joining "unknown" and "not provably true" into one class.
 - failing to prove something true leads to conclusion that it is false.

- CWA says that all things that are true have been specified as such or can be derived.
Closed World Assumption (2)

- Possible alternatives:
 1. leave system alone; accept CWA
 2. allow negation in clauses but not in conclusion of Horn Clauses
 3. allow statement of negative conclusions: search positive; search negative; report unknown;
 4. work in constrained environment where everything is known
 5. work in statistical environment where answers are expressed in terms of likelihoods.

About Prolog

- Prolog lends itself nicely to concurrency

```prolog
form: p0 :- p1, p2, p3, p4
      \-----\-----\-----\-----
      \ can be executed
concurrently(with communications about bindings) -- "AND parallelism"
```

or:

```prolog
HG :- ...................... { "OR
...     \ parallelism"
HG :- ...................... {```

Copyright 1999 Paul F. Reynolds, Jr.
About Prolog (2)

- Prolog and principles:
  - Orthogonal - separates *logic* and *control* (assert, retract and cut violate this)
  - regular - regular rules
  - security - meaning of a program is determined by what a user writes
  - simplicity - simple rules

- violates:
  - localized cost - execution cost is determined by rule order
  - defense in depth - misspellings alter meaning of program