Approaches to Real-Time Communications

QoS Service Architectures

- In the early 1990’s, the components of QoS service architectures were defined
- Several architectures were proposed:
 - Tenet
 - Domenico Ferrari at Berkeley led the Tenet Group. This group was part of the Blanca Gigabit Testbed
 - The first paper lays out the architecture for what became later the Tenet Protocol Suite
 - CSZ (Clark/Shenker/Zhang)
 - The paper is also a proposal for a QoS architecture
 - The CSZ paper was very influential in the IETF, and influenced the QoS framework for the Internet
Recall: Design of QoS Networks

- A QoS architecture has the following components

Tenet

- **Goal**: Build a packet networks that can give even stringent QoS guarantees

- **Real-time channel**: a simplex virtual connection in a packet-switched network with QoS guarantees
Tenet - Performance guarantees

- **Deterministic Service**
 - Each channel j has a delay bound D_j
 - Let d_j^k be the end-to-end delay of the k-th packet from channel j. Then
 \[d_j^k \leq D_j \]

- **Statistical Service**
 - Delay bound is expressed as a statistical bound with
 \[\text{Prob} \{ d_j^k \leq D_j \} \geq Z \]

- **Best effort**
 - No guarantees

Tenet - Traffic Description

- Traffic from channel j:
 - x_{min}^{j} minimum distance between packets from channel j.
 - x_{avg}^{j} minimum average packet interarrival time of packet from channel j averaged over an interval of length I
 - I averaging interval
 - s_j maximum packet size
Tenet - Scheduling

- A multi-level Earliest-Deadline-Due Scheduling

Deterministic

Statistical

Best-effort

Rule:
- pick "S" packet only if no conflict with "D" packet
- pick "BE" packet only if no conflict with either "S" or "D" packets

Later, the Tenet group added a jitter controlled version of EDD and a static scheduler.

Channel establishment

- Total delay must be less than delays at all nodes
- Assignments of local delay bounds is done in two phases (forward pass, backward pass)

\[D_j \leq d_{1,j} + d_{2,j} + d_{3,j} \]
Admission Control Tests

- The Tenet suite has the following admission control tests
 - Deterministic Test
 - Delay Bound Test
 - Statistical Test

Deterministic Test

- Can node n keep up with arrivals from connections even if all channels send at their peak rate?

$$\sum_j s_{j,n} / x_{\text{min},j} < 1$$

- Note: A deterministic test effectively enforces a peak rate allocation
- \rightarrow Turns out that this test is not needed
Statistical Test

- Performs a test for statistical delay bound guarantees
- Probability p_j that channel j is transmitting packets in interval I:
 \[p_j = \frac{x_{\text{min},j}}{x_{\text{ave},j}} \]

- Given that we have K independent channels, the probability that a subset C is active is given by:
 \[\text{Prob}(C) = \prod_{j \in C} p_j \prod_{j \not\in C} (1 - p_j) \]

Statistical Test 2

- Define overflow combination h as a set of connections such that
 \[\sum_{j \in h} s_{j,n} / x_{\text{min},j} \geq 1 \]

- Let H_n denote the set of all overflow combinations

- Define $P_{\text{do},n}$ as the probability of “deadline overflow” at node n. We have:
 \[P_{\text{do},n} = \sum_{h \in H_n} P(h) \]
Statistical Test 3

- The statistical test ensures that for all statistical channels \(j \), the following condition holds:

\[
P_{d_{0,n}} = 1 - z_{j,n}
\]

Delay Bound Test

- Tests for possible delay bound violations for both deterministic and statistical connections
- Divide the set of \(K \) channels into two sets \(U \) and \(V \)

\[
U = \left\{ i \mid i = 1, 2, K, u; \ d_{i,n} < \sum_{j=1}^{K} s_{j,n} \right\}
\]

\[
V = \left\{ k \mid k = u + 1, K, K; \ d_{k,n} \geq \sum_{j=1}^{K} s_{j,n} \right\}
\]
Delay Bound Test 2

- Under the assumption that for all i:
 \[x_{\min,i} \geq \sum_{j=1}^{K} s_{j,n} \]

- all deadlines are satisfied if for all $i = 1, \ldots, u$
 \[d_{i,n} \geq \sum_{j \in A} s_{j,n} + \max_{j \in U} (s_j) \]

Summary on Tenet

- The Tenet group was active from 1990-1995
- The scheme outlined here was refined in many papers
- The first Tenet protocol suite was completed in 1993, with Tenet 2 being the follow-on project

- Concepts pioneered by Tenet:
 - Parameterized QoS
 - Delay guarantees in packet-switched networks
 - Renegotiation of QoS parameters
Clark/Shenker/Zhang

- Goal: Define a QoS architecture for the Internet with focus on application needs
- Network is the current Internet, connectionless datagram network
- “Flows” are end-to-end traffic streams.

Playback Point

- Continuous media (voice, video) is transmitted over a network and played back. By buffering incoming data, the receiver can control the playback point of the data.
Proposed Services

<table>
<thead>
<tr>
<th>Tenet</th>
<th>CSZ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deterministic</td>
<td>Guaranteed</td>
</tr>
<tr>
<td>Statistical</td>
<td>Predicted</td>
</tr>
<tr>
<td>Best Effort</td>
<td>Datagram</td>
</tr>
</tbody>
</table>

Applications

- **Which fraction of packets must arrive before playback point and how to set playback point?**

- **Rigid Applications**
 - have an a priori delay bound
 - must keep playback point fixed

- **Adaptive Applications**
 - Can adaptively change playback point
 - delay bound is “de facto” (or, whatever)
 - may experience packet loss
Applications

• How sensitive to interruptions of service?

• Tolerant Applications
 • permit certain interruption
 • Example: Teleconference with Mom

• Intolerant Applications
 • No interruption is permitted
 • Example: Tele-surgery

<table>
<thead>
<tr>
<th></th>
<th>Tolerant</th>
<th>Intolerant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delay</td>
<td></td>
<td>Guaranteed Service</td>
</tr>
<tr>
<td>Rigid</td>
<td>___</td>
<td></td>
</tr>
<tr>
<td>Adaptive</td>
<td>Predicted Service</td>
<td>___</td>
</tr>
</tbody>
</table>
Services

- **Guranteed Service:**
 - Service commitments will be met for all traffic from a network client

- **Predicted Service (definition is vague)**
 1. “If the past is a guide to the future, the network will meet the service characterization”. Indicates that network measurements are used to describe service.
 2. Network attempts to give a service which allows application to minimize playback point

- **Datagram Service**
 - Best effort traffic

Traffic Description

- Leaky Bucket (Here called “Token Bucket”).
- Leaky Bucket is a term from ATM networking.

```
<table>
<thead>
<tr>
<th>Token pool (Bucket)</th>
</tr>
</thead>
<tbody>
<tr>
<td>has depth b</td>
</tr>
</tbody>
</table>

Token are added at rate r
(no tokens are added if there are b tokens)

Packet with size p removes p tokens from the pool.
If pool is empty, packet cannot enter
```
Scheduling

- CSZ proposes different scheduling algorithms
 - **Weighted Fair Queueing (WFQ)** for guaranteed service
 - We will study this discipline more. Then it is called Packetized Generalized Processor Sharing
 - **FIFO+** for predicted service

Weighted Fair Queueing

- Each flow is allocated a relative share of the link capacity r_i.
- If the link capacity is μ, then flow i will get a throughput of not less than:

 $\sum_{j \in B} \frac{\mu r_i}{\sum_{j \in B} r_j}$

- **Result from Parekh/Gallager**: With WFQ, the queueing delay of a packet from flow j at a node is bounded by

 $b_i / r_i + L / r_i$

 where b_i is the size of the token pool for flow i, and L is the maximum packet size.
FIFO+

- Tries to give each packet the average delay.

- At each node, measure the average delay of packets in the same class, d_{avg}, and compare it to the actual delay d_{actual}.
- Add $d_{\text{actual}} - d_{\text{avg}}$ as offset to packet header.
- Next node subtracts offset from actual arrival time to calculate “expected arrival time”
- Node transmits packet in the order of “expected arrival times”, i.e., the arrival time that a packet should have had had it been given average delay

Admission Control

- Some heuristic rules … not rigorous admission control proposed

- For guaranteed traffic the Parekh/Gallager results give the admission control tests

- Predicted service:
 - Admission control must be based on measurements
 - Many results on this in the last 2-3 years
Comparison: Tenet vs. CSZ

Tenet
- **Services:**
 - deterministic
 - statistical
 - best effort
- **Service Interface:**
 - x_{min}, x_{ave}, I, s
- **Scheduling:**
 - EDD

CSZ
- **Services:**
 - guaranteed
 - predicted
 - datagram
- **Service Interface:**
 - Leaky Bucket b, r
- **Scheduling:**
 - WFQ
 - FIFO+

Tenet
- **Admission control**
 - elaborate set of tests
- **Impact:**
 - Ground-breaking work on real-time communications. Has influenced both ATM and Internet.

CSZ
- **Admission control**
 - left vague
- **Impact:**
 - CSZ paper was used by the IntServ working group in the IETF as blueprint to define integrated services for the Internet.