Determining Stopping Criteria in the Generation of Web-Derived Language Models

Gary A. Monroe David R. Mikesell
{gam9r, drm9f}@virginia.edu

May 10, 2000

Abstract

In this work, we present a small-scale evaluation of two query-based sampling techniques for building language models, using a database comprised of world-wide web documents. We propose a metric by which it is possible to determine when to cease sampling a given web database, and we compare this new metric to other metrics that have been used in previous works to determine the fidelity of sampled language models.

1 Introduction

With the recent and explosive growth of the World Wide Web, many new repositories of information have become available to the public. With so many databases available for search, one potential problem that people face is how to decide which database would be appropriate to query. When there are only a small number of text databases available, a person can either search all the databases for the desired information or they can simply familiarize themselves with the general contents of each database and direct their query to one or more specific collections. However, when there are hundreds or thousands of searchable databases and the content of those databases cannot be easily ascertained without exhaustive measures, automatic database selection algorithms can be used to assist in the choice of which databases to search by identifying those databases that are most likely to satisfy the information need [GGM95, CLC95, FPV98, FPC99b, FPC99a, XC99].

Database selection algorithms require information about the contents of those databases they are selecting amongst. This information can be
obtained from a language model of the database, which lists the words that occur in the database and their frequency of occurrence. Since a completely accurate language model must include a representation of all of the words from all of the documents in a database, access to all of the documents in the database is required to generate this base language model. Because many databases do not provide this level of access to their contents (especially web databases), methods have been proposed for acquiring such metadata automatically and without the need for cooperation from the database. One such method is called query-based sampling and is the focus of our research presented in this paper. Query-based sampling is a sampling technique in which metadata is inferred by interacting with each database and observing the outcomes.

Some previous research has been done on query-based sampling but it is a relatively new technique and little is known about the generality and behavior of the technique under a variety of conditions. Prior research by Callan, Connell, and Du [CCD99] demonstrated this technique's effectiveness at learning accurate metadata for several research testbeds of varying size and heterogeneity. These results were promising but the conditions under which they studied query-based sampling may not have been appropriate to generalize the results to all text databases. Furthermore, there has been no method proposed by which a sampling scheme can determine when to stop sampling. The research presented in this paper investigates the use of query-based sampling by examining its effectiveness in generating accurate language models of databases composed of World Wide Web data.

2 Research Questions

Prior research showed that the query-based sampling technique was able to create language models that were correlated with the sampled databases [CCD99]. However, it is not known how well query-based sampling will perform on databases comprised of world-wide web documents. It is also unknown what degree of correlation is required in order to effectively use that information in database selection algorithms, or even how to correctly measure that correlation. In addition, if it is determined that query-based sampling is a viable technique for learning language models of web databases, then, in order for this technique to be efficient, there must be a way to determine when a sampled language model has evolved to the point where it is a "good enough" representation of the underlying data.

The study presented here is intended to address questions about the
utility of query-based sampling to web databases. We examine the evolution of a language model sampled from a database comprised of web pages, and attempt to determine if a learned language model highly correlated to the actual web database language model could be discovered in a reasonable sample size. Moreover, we hoped to determine if a stopping criterion in the generation of the learned language model could be discovered.

3 Methodology

Three different language model sampling strategies were implemented and evaluated over world-wide web data using a variety of metrics. Models created by the different strategies were examined over their evolution as more documents were sampled by comparison to the complete language model, and by comparison to the model's predecessor in its evolution. By comparing to the complete language model, we hoped to gain insight into the rate of convergence of a given model to the complete model. By comparing a model to its predecessor in its evolution, we hoped to determine a stopping criterion.

Prior work evaluated the fidelity of learned language to the actual language models using the ctf ratio, percentage of the total vocabulary learned, and Spearman rank correlation coefficient. These metrics were used in this work, but since they require full knowledge of the actual language model they cannot be used to evaluate any real-world sampling technique. However, they do provide insight as to how the learned model converges to the complete model.

A number of metrics that could be known in a real-world sampling situation were also examined. The growth of the size of the model and the rate of change of the model growth provided insight as to the effectiveness of the sampling techniques in gathering vocabulary. The differences in document frequency proportions were examined to see how quickly document frequencies stabilized with respect to the preceding language model. Finally, the proportion of rare terms in the learned language model was investigated, and how this proportion varied as the language model grew was studied.

3.1 Data

The study was conducted on a local database of web documents. The database was created from data provided by the DMOZ Open Directory
Project. The Open Directory Project is an attempt to create a comprehensive directory of the web by employing the help of thousands of volunteer editors. The directory is organized similarly to category structures of some of the most popular search engines, and some popular search engines use the DMOZ information in their own categories. DMOZ provides a comprehensive list of the URLs that have been assigned to each individual subdirectory.

The database was created from the list of URLs in the DMOZ Recreation/Autos subdirectory. At the time of the experiments, 6620 URLs were listed. We attempted to fetch all of the listed pages and store them locally to maintain a static database to run our experiments. Out of the 6620 listed URLs, 140 were invalid URLs (either return a dead link or an invalid DNS entry), giving a total of 6480 web pages available.

The actual language model was then built from the database of locally stored pages. Each page was fetched, and pages of less than 100 bytes in size were discarded. For the pages of size greater than 100 bytes, all HTML tags and scripts were parsed out of the pages. The remaining text from each page was stopped and stemmed. Each term that was extracted from each page was added to the vocabulary list and the document frequency was calculated. The resulting actual language model was a compilation of 5153 pages. The vocabulary size was 37,691 terms, 58% of which had a document frequency (also referred to as df) of 1.

3.2 Search Engine

Once a local database representing an actual web database was created, a local search engine to index and search the local database was needed. MiniSearch v.0.2, a local search engine freely available on the web, was used as the search engine to conduct the experiments. MiniSearch consists of two Perl scripts and a few supporting configuration files. One script performs the indexing on a collection of documents. The second script performs searches on the indexed documents.

The search engine models a Boolean search. Query terms can use the logical OR or AND operators. Documents that contain any of the query terms are returned as potential matches. If the OR operator is used (the default), all the potential matches are members of the result set. If the AND operator is used, only the documents that contain all of the query terms are members of the result set. The result set is then ordered by the sum of the term frequencies of the query terms in the document, with the highest

1More information is available at http://www.dmoz.org.
sum presented first. The number of results specified by the user is then displayed. Documents with equivalent term frequency sums are displayed in the order in which they were indexed. During this study, only single term queries were used, so results were ordered by term frequency of the query term.

3.3 Sampling Strategies

Three different sampling strategies were used in the experiment. Two of the strategies were variations on the query-based sampling technique. The initial query term for the query-based sampling techniques was a term taken at random from the complete language model. The third strategy was a purely random sampling of documents.

3.3.1 Random Query-Based Sampling

After the top 10 results were returned from an initial seed query, the vocabulary from the result pages was accumulated. One term was chosen at random from the learned vocabulary, and that term was used for the subsequent query. The probability of a term being chosen was inversely proportional to the number of terms in the sampled language model at that point in its evolution. The top 10 results retrieved by the search engine were examined. If the search engine returned a page had been previously processed by an earlier query, it was discarded. After approximately every 30 pages (actually, from 30-39), a snapshot of the evolving language model was saved. This process was repeated until the vocabulary from 2000 unique pages had been added to the model.

3.3.2 Random Query-Based Sampling (no df = 1 query terms)

This strategy is identical to the Random Query-Based Sampling Strategy for the first approximately 25 pages returned by the search engine. After that point, if the randomly chosen term to be used for the next query has a document frequency of 1, then it is discarded and another term is chosen at random. Snapshots of the evolving model were taken as above, and sampling was continued as above until the vocabulary from 2000 unique pages had been added to the model. The thought behind this technique is that, by removing terms with document frequencies equal to one, a higher fidelity model would be produced more rapidly since we believed that rare query terms would tend to point to pages that are less representative of the underlying database.
3.3.3 Completely Random Document Sampling

This technique can be described as picking pages out of a hat. One page was chosen at random without replacement from the 5153 pages used to build the actual language model. The vocabulary from each page was accumulated into the evolving language model. After exactly every 30 pages seen, a snapshot of the evolving language model was saved. This sampling strategy continued until all 5153 pages were chosen. This strategy models random sampling and provides us with a basis for statistical analysis.

For each sampling strategy, 18 different learned language models were built from 18 separate runs. Statistics derived from the models reflect these 18 replicates.

4 Analysis

As can be seen in figures 1 and 2, the language models that use the query sampling technique grow quickly early in their evolution, then the growth levels off. However, even after 2000 documents have been examined, the models are still growing at nearly 200 terms per 30 documents. Considering that the complete language model has 37,691 terms, this rate of growth is considerable. Note that the models created by randomized document selection grow at a slower rate. This may be due to a size bias introduced by the search engine used by the other techniques. As mentioned before, the search engine sorts according to term frequency, which may be correlated to document size.

Callan, et. al, introduced the ctf ratio metric as a way to measure the quality of a database by weighting the importance of each term. This ratio is defined as:

$$\frac{\sum_{i \in V} ctf_i}{\sum_{i \in V} ctf_i}$$

where ctf_i is the number of times term i occurs in the database. As figure 3 shows, the ctf ratio grows rapidly, and after only 300 documents for the query term sampling techniques, it approaches 0.9. This indicates that, for this database, the frequent terms are learned quickly. Unfortunately, to calculate the ctf ratio, the collection term frequencies are needed, and that information is not likely to be available in a real-world situation. Note that the sampling technique that eliminates rare query terms produces models with a slightly greater ctf ratio than the random query term technique, even
Figure 1: Documents Sampled vs. Number of Terms in Model

Figure 2: Documents Sampled vs. Number of New Terms Added to Model
though the random query term technique produces slightly larger models for a given number of documents.

Since Zipf’s law [Zip49] states that there is a predictable relationship between a term’s rank and its frequency in the database, a comparison of ranks between a sampled model and the complete model may provide some useful information. The Spearman rank correlation coefficient can be used to compare two rankings. However, in this case, its utility is suspect. Since approximately 58% of the terms in the complete model have term frequencies of 1, this indicates that there will be a very large number of ties. Figure 4 shows that, for the query sampled models, the Spearman coefficient rises sharply early, then continues to rise at a slower rate. For the randomized document selection, the Spearman coefficient shows some oscillating behavior until about 1000 documents. Again, this metric has the additional disadvantage of requiring the complete language model in order to calculate it.

The proportion of terms with document frequency of 1 (referred to hereafter as df1 proportion) provides an estimator of how prevalent rare terms are in the language model. This metric does not require knowledge of the complete language model; however, knowledge of the complete model does provide information as to what df1 proportion the learned model should converge to. In models from all three sampling techniques, early in the model growth this proportion is overestimated. Then the proportion undershoots the expected value, then slowly approaches the expected value as the
models grow. The completely randomized document selection undershoots the expected value the least, which is consistent with a sampling technique that is unbiased. The other two techniques are not random, and exhibit a more dramatic undershoot. All three techniques reach a minimum at approximately 500 documents. After this point, the proportion of rare terms converges slowly to that of the complete model.

Early in the evolution of a model, it is not unreasonable to assume that the model is a poor reflection of the complete model, and is exhibiting some sort of startup behavior until it begins to stabilize. The ctf ratio and Spearman coefficient metrics support this assumption, as early on in the growth of a model, these metrics have low values. If we consider the df1 proportion to give an indication of the "poorness" of the model early in its evolution, then it would not be unreasonable to look for a defining point in the df1 proportion graph where we can consider startup behavior to have ended. At the minimum value df1 proportion, we can see from figures 6 and 7 that the ctf ratio is well above 0.85 for all three sampling techniques, and the Spearman rank correlation is between 0.45 and 0.55.

The final metric we examined was the change in RMS difference of df proportions between a language model and its predecessor in its evolution. This is calculated by:
Figure 5: Number of Documents Sampled vs. Proportion of Terms With df = 1

Figure 6: Proportion of Terms With df = 1 vs. /it ctf Ratio
Figure 7: Proportion of Terms with df = 1 vs. Spearman Rank Correlation Coefficient

\[
\sqrt{\sum_{i \in LM_{j-1}} \frac{(df_{i,j} - df_{i,j-1})}{n_j}}
\]

where \(LM_j\) represents the language model at a given snapshot, and \(LM_{j-1}\) represents the language model at the previous snapshot.

This metric is an indicator of how much a model is changing as it evolves. As expected, the model changes rapidly at the beginning of its evolution, and then levels off quickly. This observation supports the assumption above that models exhibit startup behavior before they stabilize. At the 500 document point, the RMS difference between models is approximately 0.01 for the query-based sampling techniques.

5 Conclusion and Discussion

In the query-based sampling technique to develop learned language models, the question of when to stop querying is troubling. If one stops too soon, then the model is a poor reflection of the underlying data. Stopping too late is wasteful of resources. In this paper, we have examined the application of this technique to web-based data. We have shown that this technique can produce models that reflect the underlying data, and have tested how faithful of a reflection they are. Furthermore, we have presented a metric
Figure 8: Number of Documents Sampled vs. RMS Difference in Document Frequency Proportions
that may be useful in providing a stopping point for real-world query-based sampling.

Eliminating rare terms from the set of query term candidates had little effect on the models. Models generated by eliminating rare query terms were, on the average, very slightly smaller, had slightly higher ctf ratios, and, after the startup period, had slightly lower Spearman coefficients than their counterparts generated from a random query term selection. They did have a somewhat higher minimum df1 proportion than models generated from a random query term selection, but whether that difference is useful remains to be seen.

This is a small study, focusing on one very small subset of the web. A future study to investigate these sampling techniques and the utility of the df1 proportion and RMS difference metrics would need to examine a larger subset of the web in order to draw more useful conclusions.

References

