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Abstract

In peer-to-peer file sharing systems, file replication tech-
nology is widely used to reduce hot spots and improve file
query efficiency. Most current file replication methods repli-
cate files in all nodes or two endpoints on a client-server
query path. However, these methods either have low effec-
tiveness or come at a cost of high overhead. This paper
presents an Efficient and Adaptive Decentralized file repli-
cation algorithm (EAD) that achieves high query efficiency
and high replica utilization at a significantly low cost. EAD
enhances the utilization of file replicas by selecting query
traffic hubs and frequent requesters as replica nodes, and
dynamically adapting to non-uniform and time-varying file
popularity and node interest. Unlike current methods, EAD
creates and deletes replicas in a decentralized self-adaptive
manner while guarantees high replica utilization. Simula-
tion results demonstrate the efficiency and effectiveness of
EAD in comparison with other approaches in both static
and dynamic environments. It dramatically reduces the
overhead of file replication, and yields significant improve-
ments on the efficiency and effectiveness of file replication
in terms of query efficiency, replica hit rate and overloaded
nodes reduction.

1 Introduction

Over the past years, the immense popularity of Internet

has produced a significant stimulus to peer-to-peer (P2P)

file sharing systems, where a file requester’s query will be

forwarded to a file provider in a distributed manner. They

can be used in video-on-demand service and shared digital

library applications where individuals dedicate files which

are available to others.

P2P file sharing systems have been commonly used in

today’s Internet. A recent large scale characterization of

HTTP traffic [20] has shown that more than 75% of Inter-

net traffic is generated by P2P file sharing applications. The

median file size of these P2P systems is 4MB which repre-

sents a thousand-fold increase over the 4KB median size of

typical web objects. The study also shows that the access to

these files is highly repetitive and skewed towards the most

popular ones. In such circumstances, if a server receives

many requests at a time, it could become overloaded and

consequently cannot reply the requests quickly. Therefore,

highly-popular files (i.e., hot files) or flash crowds can ex-

haust the bandwidth capacity of the servers, and lead to low

efficiency of file sharing.

File replication is an effective method to deal with the

problem of server overload by distributing load over replica

nodes. It helps to achieve high query efficiency by reduc-

ing server response latency and lookup path length (i.e., the

number of hops in a lookup path). A replica hit occurs when

a file request is resolved by a replica node rather than the file

owner. Replica hit rate denotes the percentage of the num-

ber of file queries that are resolved by replica nodes among

total queries. Higher hit rate means higher effectiveness of

a file replication method.

Recently, numerous file replication methods have been

proposed. They can be generally classified into three cate-

gories denoted by ServerSide, ClientSide and Path. Server-
Side replicates a file close to the file owner [18, 4, 23, 27],

ClientSide replicates a file close to or at a file requester [8,

6], and Path replicates on the nodes along the query path

from a requester to a file owner [16, 28, 3]. However, most

of these methods either have low effectiveness on improv-

ing query efficiency or come at a cost of high overhead.

By replicating files on the nodes near the files’ owners,

ServerSide enhances replica hit rate and query efficiency.

However, it cannot significantly reduce path length because

replicas are close to the file owners. It may overload the

replica nodes since a node has limited number of neighbors.

On the other hand, ClientSide could dramatically improve

query efficiency when a replica node queries for its replica

file, but such case is not guaranteed to occur as node interest



varies over time. Moreover, these replicas have low chance

to serve other requesters. Thus, ClientSide cannot ensure

high hit rate and high replica utilization. Path avoids the

problems of ServerSide and ClientSide. It provides high hit

rate and greatly reduces lookup path length. However, its

effectiveness is outweighed by its high cost of overhead for

replicating and maintaining much more replicas. Further-

more, it may produce under-utilized replicas.

Since more replicas lead to higher query efficiency and

vice versa, a challenge for a replication algorithm is how

to minimize replicas while still achieving high query effi-

ciency. To deal with this challenge, this paper presents an

Efficient and Adaptive Decentralized file Replication algo-

rithm (EAD) that achieves high query efficiency and high

replica utilization at a significantly low cost. A novel fea-

ture of EAD is that it achieves an optimized tradeoff be-

tween query efficiency and overhead of file replication. In-

stead of creating replicas on all nodes or two ends on a

client-server path, EAD chooses query traffic hubs (i.e.,

query traffic conjunction nodes) as replica nodes to en-

sure high replica hit rate. It achieves comparable query

efficiency to Path but creates much less replicas. Unlike

ClientSide, it guarantees high hit rate since a replica node

is the query traffic hub of the file. Compared to ServerSide,

it reduces lookup path length dramatically and avoids over-

loading replica nodes.

Another novel feature of EAD is that it adaptively adapts

the file replica nodes to non-uniform and time-varying file

popularity and node interest based on recent query traffic

in a decentralized self-adaptive manner. Unlike other al-

gorithms in which a file owner determines where to create

or delete replicas in a centralized fashion, EAD lets nodes

themselves decide whether to store or delete replicas based

on the query traffic. This self-adaptive manner enhances

EAD’s scalability and meanwhile guarantees high utiliza-

tion of replicas. Furthermore, EAD employs an exponen-

tial moving average technique to reasonably measure file

query traffic, which is critical to the effectiveness of EAD.

EAD is independent of P2P structure, and is also applica-

ble for the caching of files and metadata (i.e., routing hints).

We intend our results to be applicable to both structured

P2Ps [24, 17, 29, 13, 14] and unstructured P2Ps [6, 5, 11, 9].

In this paper, we will take structured P2P system to explain

the EAD algorithm.

The rest of this paper is structured as follows. Section 2

presents a concise review of representative file replication

approaches for P2P systems. Section 3 presents the EAD

file replication algorithm. Section 4 shows the performance

of EAD in comparison with other approaches with a variety

of metrics, and analyzes the factors effecting file replication

performance. Section 5 concludes this paper.

2 Related Work

As mentioned, most current file replication methods

generally can be classified into three categories: Server-
Side, ClientSide and Path. Some proposed approaches

use the combination of them. In the ServerSide category,

PAST [18] replicates each file on a set number of nodes

whose IDs match most closely to the file owner’s ID. It

uses file caching along the lookup path to minimize query

latency and balance query load. Similarly, CFS [4] repli-

cates blocks of a file on nodes immediately after the block’s

owner. It also caches a file location hint along a path to

improve query efficiency. Stading et al. [23] proposed to

replicate a file in locality close nodes near the file owner.

Overlook [27] places a replica of a file on a node with most

incoming lookup requests for fast replica location. It needs

to keep track of client-access history to decide the replica

nodes.

In the ClientSide category, Gnutella [6] replicates files

in overloaded nodes at the file requesters. In LAR [8], a

node makes decisions of file replication based on its load.

LAR specifies the overloaded degree of a server that a file

should be replicated. In addition to replicating a file at the

requester, it also has file location hint along the lookup path.

Backslash [23] pushes cache to one hop closer to requester

nodes as soon as nodes are overloaded.

In the Path category, Freenet [1] replicates files both on

insertion and retrieval on the path from the requester to

the target. PAST [18], CFS [4], LAR [8], CUP [16] and

DUP [28] perform caching along the query path. Cox et
al. [3] studied providing DNS service over a P2P network.

They cache index entries, which are DNS mappings, along

query paths.

EAD replicates a file at nodes in a path with high query

load of the file, which improves replica hit rate and query

efficiency and meanwhile reduces replicas. Unlike most of

these methods, in which a file owner needs to keep track

of replica nodes for replica creation and removal, EAD

conducts the replica adjustment in a decentralized man-

ner. EAD shares similarity with the works in [22, 12, 15]

in terms of replica node selection and replica adaptation.

IRM [22] aims at integrating file replication and consis-

tency maintenance in a systematic manner in order to im-

prove the efficiency of both file replication and consistency

maintenance. EAD focuses on the efficiency improvement

of only file replication. EAD addresses more detailed is-

sues in file replication, and provides a strategy for query

rate determination. In addition, this paper comprehensively

studies EAD through simulations. RaDaR [12] deploys al-

gorithms for deciding on automatic replication and migra-

tion of content. It considers server load to balance the load

among the servers, and the proximity of clients to servers

to place replicas in one proximity of clients from which
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Figure 1. File queries in a file sharing system.

most of the requests originate. Moreover, to be scalable, the

algorithms for making these decisions rely only on a lim-

ited amount of information about the system. Spread [15]

considers network-level adaptation of replica placement. A

proxy cache expresses interest in the object by subscribing

to the replication service. A file is replicated by using push

or a periodic-pull.

There are other studies for file replication in unstructured

P2Ps [2, 25, 26, 19]. Since unstructured P2P systems use

flooding or random probing based methods for file loca-

tion, the number of replicas directly affects the efficiency of

file query. These works study the system performance such

as successful queries and bandwidth consumption when the

number of replicas of a file is proportional, is uniform and

is square-root proportional to the query rate. The works fo-

cused on the relationship between the number of replicas,

file search time and load balance, but did not investigate

the impact of replica location on file query efficiency. EAD

aims to study the locations of replicate files to achieve com-

parably query efficiency with less replicas.

Splitting a large file into small pieces can increase the

service capacity of a large file rapidly. Replicating file loca-

tion hint along query path can also improve file query effi-

ciency. EAD can employ the techniques to further improve

its performance. These techniques are orthogonal to our

study in this paper.

3 EAD File Replication Algorithm

In this section, we describe the EAD algorithm. We start

off by describing the goals of EAD and the strategies to

achieve the goals. Then, we discuss the various aspects of

the algorithm in detail. Finally, we present a summary of

the EAD algorithm.

3.1 Goals and Strategies

In a P2P file sharing system, overloaded conditions are

common during flash crowds or when a server hosts a hot

file. For example, in Figure 1, if many nodes query for a hot

file in node G at a time, G will be overloaded, leading to

delayed file query response. File replication is an effective

method to deal with the problem of overload condition. For

instance, node G replicates its file to node K, F and N , thus

a file query may encounter replica nodes before it arrives

at node G. By replicating a hot file to a number of other

nodes, the file owner distributes load over replica nodes,

leading to quick file response. A file query may encounter

replica nodes before it arrives at file owner, reducing lookup

path length. Thus, replication helps achieve high file query

efficiency due to lookup path length reduction and quick

query response.

In ServerSide, node G will choose its neighbors K, F ,

N , O and L as options for replica nodes. Though it has

high hit rate, it cannot significantly reduces the lookup path

length and may overload the neighbors. On the other hand,

ClientSide replicates a file to requesters A, B and C. Repli-

cating files close to or in the file requesters brings benefits

when the requester or its nearby nodes always query for the

file. However, considering non-uniform and time-varying

file popularity and node interest variation, the replicas may

not be fully utilized. Thus, ClientSide cannot guarantee

high hit rate, though it can reduces lookup path length when

hit occurs. Path replicates the file in all path nodes D, E and

F . It has high hit rate and significantly reduces lookup path

length, but comes at high cost of much more replicas.

The ultimate objective of EAD is to achieve an optimized

tradeoff between query efficiency and file replication over-

head by increasing hit rate and reducing replicas. Specif-

ically, it EAD aims to overcome the drawback of these

methods with two goals. Firstly, it aims to minimize repli-

cas and achieve high file query efficiency. More replicas

lead to higher query efficiency and vice verse. How can a

replication algorithm reduces replicas without compromis-

ing query efficiency? Rather than statically replicating a file

along a query path, EAD replicates a file in nodes with high

query traffic of the file, thus reducing replicas while ensur-

ing high hit rate and comparable query efficiency.

Secondly, rather than depending on a file owner to de-

termine replica creation and deletion in a centralized man-

ner, EAD aims to conduct the operations in a decentralized

manner without compromising replica utilization. As P2P

systems can be very large, decentralized replication deci-

sion making is key to scaling the system. For example, the

popular KaZaA file-sharing application routinely supports

on the order of two million simultaneous users, exporting

more than 300 million files. To achieve this objective, EAD

uses self-adaptive method in which nodes themselves de-

cide whether to be replica nodes, and replica nodes them-

selves determine whether to delete replicas based on their

query traffic.

EAD does not address P2P churn where nodes join and

leave the system continually. These actions are handled by

the underlying P2P system and should not affect the appli-



cability of the replication algorithm.

3.2 Algorithm Description

The basic idea of EAD is replicating a file in a node with

high query traffic of the file, so that more queries will en-

counter the replica node, leading to high hit rate. To deal

with time-varying file popularity and node interest, EAD

adaptively adjusts the file replica nodes based on recent

query traffic in a decentralized manner.

We discuss EAD from three aspects of file replication:

(1) where to replicate files so that the file query can be sig-

nificantly expedited and meanwhile the file replicas can be

taken full advantage of? (2) how to conduct the creation of

hot files and the deletion of under-utilized replicas in a de-

centralized manner for high replica utilization? (3) how to

reasonably measure file query traffic for replica adjustment?

3.2.1 Efficient File Replication

In P2P file sharing systems, some nodes carry more query

traffic load than others [7, 21]. It is mainly caused by

three reasons. First, node interests are different. There will

be more query traffic along the query paths from the fre-

quent file requesters and the file owner. Second, file pop-

ularity is non-uniform and time-varying. Nodes receiving

and forwarding hot file queries take on more query traffic

load. Third, nodes are located in different places and may

have different number of neighbors in P2P overlay network.

Nodes in some overlay areas with hot files or with more

neighbors will experience more query traffic. For instance,

in Figure 1, because nodes A, B and C are very interested

in a hot file in node G, all the queries need to pass through

nodes E and F before they arrive at file server G. Thus,

nodes E and F forward much more queries for the file than

others.

Based on this observation, we can choose query traffic

hubs E and F as replica nodes, so that the queries from dif-

ferent direction can encounter the replica nodes, increasing

the replica hit rate. The efficiency of this strategy is deter-

mined by whether the replica nodes serve as query traffic

hubs for a certain time period.

A study shows that the access to P2P files is highly repet-

itive and skewed towards the most popular ones [20]. We

define visit rate of a node as the number of queries the node

receives during a unit time period T .

Theorem 3.1 In a P2P system, a node with a highly-
popular file or high visit rate has high probability to be
visited again by a random node.

Proof Let vi represent the the visit rate of node i, and pi

represent the probability that node i receives a query during

unit time period T . pi equals to the ratio of the number of

queries node i receives versus the total number of queries in

c

l/c>

l/c<1/

Make replication to release extra load

Make replication only when its benefit > cost

l

Figure 2. File replication decision by a file
server.

the system during T . That is, pi = vi/
∑n

j=1 vj , where n is

the total number of nodes in the system. Let p̃i denotes the

probability that node i is visited by a random node. Assume

p̃i follows Poisson distribution as in [24], then after k visits,

p̃i = 1 − (1 − pi)k. When vi increases, pi will increase,

subsequently p̃i will increase.

Theorem 3.1 implies that traffic hubs have high prob-

ability to continue to be traffic hubs for a certain time pe-

riod. Thus, traffic hubs usually have higher traffic than other

nodes in a lookup path for a time period. In order to re-

lease file owner’s load quickly and enhance the utilization

of file replicas, traffic hubs in query paths and frequent file

requesters should be the replica nodes.

Therefore, EAD replicates a file in nodes that have been

carrying more query traffic of the file or nodes that query

the file frequently. The former increases the probability

that queries from different directions encounter the replica

nodes, and the latter provides files to the frequent file re-

questers without query routing, thus increasing replica hit

rate. In addition, replicating file in the middle of a query

path rather than in a node near the server as in ServerSide
speeds up the file query.

We define query rate of a file f , denoted by qf , as the

number of queries initiated by a requester or forwarded by

a node during unit time period T . qf should be indexed by

different files such as qf1 and qf2 , but for brevity, we omit

the indices here. A technique for reasonably determining qf

will be introduced in Section 3.2.3. EAD sets a threshold for

query rate, Tq; Tq = αq̄, where α is a constant parameter,

and q̄ is the average query rate in the system.

q̄ =
m∑

j=1

qfj
/m,

where m is the number of files in the system. If a node’s

qf > Tq, it is regarded as a frequent requester or traffic hub

for file f . A node periodically calculates its qf . If qf > Tq

and it has enough capacity such as storage space or band-

width for a file replica, it incorporates a file replication re-

quest and its qf into a file query when initiating or forward-

ing a file request. A traffic hub also needs to incorporate its



IP address and ID into the file query. Including replication

requests into file queries avoids additional overhead of the

file replication algorithm.

In addition to the original owner of a file, a replica node

can also replicate the file to other nodes. We use server to

denote both the original file owner and replica nodes. We

use a server’s visit rate to represent its query load denoted

by l. We use c to denote a node’s capacity represented by

the number of queries it can respond during T . We use node
utilization to denote the fraction of a node capacity that is

used, represented by l/c. Each server i records its query

load li over T periodically, and checks whether it is over-

loaded or lightly loaded by a factor of γl; i.e. whether

li/ci > γl or < 1/γl,

as shown in Figure 2. In the former case, it releases

(li − γlci) query load units by replicating files. In the latter

case, though it is not overloaded, replication may enhance

query efficiency. Therefore, it makes decision of file repli-

cation based on the benefits and cost brought about by the

file replication.

When overloaded, a file’s server selects the nodes with

high query rates to be the replica nodes to release its load.

Specifically, the server firstly orders the replication re-

questers based on their qf in a descending order. Then, it

retrieves replication requesters in the list one at a time, and

replicates f at the requester until∑
qf ≥ (li − γlci),

which makes the server lightly loaded. This scheme guaran-

tees that nodes with higher query rates have higher priorities

to be replica nodes, leading to higher replica hit rate. In the

case that there is no file replication request, then a server

replicates file f to its neighbors that forward the queries of

f most frequently.

If the file server is not overloaded, it makes file replica-

tion only when the benefit brought about by the replication

is greater than its cost. In practice, a node has various ca-

pacities in terms of bandwidth, memory storage, processing

speed, and etc. We assume that different capacities can be

represented by one metric. If a file is replicated in a re-

quester with qf and d hop distance to the file server, it can

save the query forwarding resource of qf × d× l̄q, where l̄q
is the resource consumption for forwarding one query. On

the other hand, it costs storage resource r for a replica. If

the benefit of the file replication is greater than its cost; that

is,
qf × d × lq > r,

then the file server makes a replication in the requester.

3.2.2 Decentralized File Replica Adaptation

Considering that file popularity is non-uniform and time-

varying and node interest varies over time, some file repli-

cas become unnecessary when there are few queries for

these files. To deal with this situation, EAD adaptively re-

move and create file replicas adaptively.

In previous methods, a file server maintains information

of its replica nodes to manage the replicas and disseminates

information about new replica sets. Rather than depending

on such a centralized method, EAD makes replica adjust-

ment in a decentralized manner. EAD lets nodes themselves

determine if they should have replicas or delete replicas

based on their actually experienced query traffic. If a node

has higher query traffic of a file, it requests to be a replica

node of the file. On the other hand, if a replica node re-

ceives less queries of a replica, it removes the replica. Such

decentralized adaptation help to guarantee high hit rate and

replica utilization. In addition, it reduces the extra load for

replica information maintenance in file servers, making the

replication algorithm more scalable.

Specifically, EAD lets each node periodically update its

query rate of each file. If a node’s qf > Tq, it requests to

have a replica as introduced in the previous Section. If a

replica node’s qf < δTq, where δ is a under-loaded factor.

It means that the utilization of the replica is low, the replica

node records the replica as infrequently-used replica. When

the qf < δTq condition occurs for a specified number of

time periods, or when the node needs more space for other

replicas, the node removes the replica. Therefore, the deter-

mination of keeping file replicas is based on recently expe-

rienced query traffic due to file popularity and node interest.

When a file is no longer requested frequently, there will be

less file replicas for it. The adaptation to query rate ensures

that all file replicas are worthwhile and there is no waste of

overhead for the maintenance of unnecessary replicas, thus

ensuring high replica utilization.

—————————————————————————

Algorithm 1: Pseudo-code for EAD file replication algorithm.

—————————————————————————

//executed by a file requester
periodically calculate qf t by qf t = βyt−1 + (1 − β)qf t−1

if qf t > αTq then
if query for file f then{

include replication request into the query}

//executed by a query forwarding node
periodically calculate qf t by qf t = βyt−1 + (1 − β)qf t−1

if qf t > αTq then
if receive a query for file f to forward then{

include replication request into the query}

//executed by a file server i
periodically calculate li
if it is overloaded by a factor of γl {

if there are file replication requests during T{
order replication requesters based on their qf



in a descending order

while
∑

qf t < (li − γlci) do{
replicate file to replication requester on the top of the list

remove the replication requester from the top of the list}}
else

replicate file to the neighbor nodes that most

frequently forward queries for file f}
else

for each requested file replication by a node with qf t
if qf t × d × lq > r

make a replication to the replication requester

//executed by a replica node
for each replica of file f do
periodically calculate qf t by qf t = βyt−1 + (1 − β)qf t−1

if qf t ≤ δTq do
remove file replica

————————————————————————–

With the decentralized adaptation algorithm, when a file

is becoming more and more popular, the replicas of the

file will spread wider and wider to the traffic hubs and re-

questers in the system, and the query load of the file is

distributed among the replica nodes. From the perspective

of the entire system, file query can be resolved more effi-

ciently at relatively lower cost of storing replicas. When

a file is becoming less and less popular, its replicas will

be removed from the system until a balanced condition is

reached, where no node is overloaded by the file’s queries,

and the all replicas are fully utilized.

3.2.3 Query Rate Determination

File popularity and node interest vary over time. For exam-

ple, a file may suddenly become hot for a very short period

of time and then changes back to cold. In this case, based

on the file replication algorithm introduced, a number of

nodes replicate the file when they observe high qf of the

file, and then remove the replicas when qf is low after the

next periodical measurement, leading to replica fluctuation

and a waste of replication overhead. To deal with this prob-

lem, rather than directly using the periodically measured re-

sults, EAD employs exponential moving average technique

(EMA) [10] to reasonably determine file query rate over

time period T .

EMA assigns more weight to recent observations with-

out discarding older observations entirely. It applies weight-

ing factors to older observed qf , so that the weight for each

older qf decreases exponentially. The degree of decrease is

expressed as a constant smoothing factor β, a number be-

tween 0 and 1.

The observation at a time period t is designated yt, and

the value of the query rate at any time period t is designated

Table 1. Simulated environment and parame-
ters.

Parameter Default value
File distributon Uniform over ID space

Number of nodes 4096

Node capacity c Bounded Pareto: shape 2
lower bound: 500
upper bound: 50000

Number of queried files 50

Number of queries per file 1000

Number of replication operations 5-25

Tq 5

γl 1

β, δ 0.5

T 1 second

qf t. The formula for calculating qf t at time periods t ≥ 2
is

qf t = βyt−1 + (1 − β)qf t−1.

Smaller β makes the new observations relatively more im-

portant than larger β, since a higher β discounts older obser-

vations faster. Thus, node i observes the number of queries

for file f periodically, and computes qf using the EMA for-

mula. EMA-base query rate calculation helps to reasonably

measure query traffic, which is critical to EAD’s effective-

ness.

3.3 Summary

Unlike other methods that replicate files without con-

sidering actual query traffic, EAD guarantees high replica

utilization by only replicating highly-popular files or

frequently-requested files in their interested requesters or

traffic hubs that are capable of a replica. Requesters that

frequently query for a file can get the file from itself with-

out query routing. Traffic hubs provide files to requesters

from different directions without further request routing.

In the previous methods, servers periodically compare

their load to local maximum and desired loads. High load

causes a server to attempt creation of new replicas, and low

load causes a server to delete replicas. The centralized file

replica management is not scalable, and cannot guarantee

high replica utilization. Decentralized adaptation strategy

in EAD lets nodes themselves determine to create or delete

file replicas based on their experienced query traffic. This

decentralized manner has higher scalability, and ensures

high replica utilization. Algorithm 1 shows the pseudocode

of EAD file replication algorithm integrating the different

strategy components.



4 Performance Evaluation

We designed and implemented a simulator for evaluat-

ing the EAD algorithm based on Chord P2P system [24].

We use system utilization to represent the fraction of

the system’s total capacity that is used, which equals to∑n
i=1 li/

∑n
i=1 ci.

We compared the performance of EAD with ServerSide,

ClientSide and Path in both static and dynamic environ-

ments. Experiment results show that EAD achieves high hit

rate, and balanced load distribution with less file replicas.

Moreover, EAD is resilient to P2P churn, where nodes join

in and leave the system continually and frequently. In addi-

tion, EAD’s decentralized adaptation strategy is effective in

guaranteeing high replica utilization.

To be comparable, we used the same number of replica-

tion operations when a server is overloaded in all replication

algorithms. In a replication operation, the server randomly

chooses one of its neighbors in ServerSide, chooses a fre-

quent requester in ClientSide, and chooses all nodes in a

lookup path in Path to replicate a file. Therefore, EAD,

ServerSide and ClientSide replicate a file to a single node

while Path replicates to a number of nodes in one replica-

tion operation.

We assumed bounded Pareto distribution for node capac-

ities. This distribution reflects the real world where there

are machines with capacities that vary by different orders

of magnitude. The file requesters and requested files in the

experiment were randomly chosen. File lookups were gen-

erated according to a Poisson process at a rate of one per

second as in [24]. Table 1 lists the parameters of the sim-

ulation and their default values. The values are reasonably

chosen. γl equals to 1 means that a node is overloaded when

its query load exceeds its capacity. Though different param-

eter value setting affects the absolute experiment results, it

will not affect the relative performance between the tested

replication algorithms. Thus, it will not affect the conclu-

sions drawn from the experiment results.

4.1 Effectiveness of Replication Algo-
rithm

Figure 3(a) demonstrates the replica hit rate of differ-

ent algorithms. We can observe that ClientSide generates

the least hit rate, EAD has higher hit rate than ServerSide,

and Path leads to higher hit rate than EAD. In ClientSide,

files are replicated in frequent requesters, other requesters’

queries have low possibility of passing through these repli-

cas. Moreover, the replica nodes may not request the same

file later due to time-varying node interest. Consequently,

ClientSide is not able to make full use of replicas, and it has

very low replica hit rate. ServerSide replicates a file near

its owner, such that a query for the file has high probabil-

ity to encounter a replica node before it arrives at the file

owner. The result that EAD leads to higher hit rate than

ServerSide is particularly intriguing given that they have

the same number of replicas. Though ServerSide has high

possibility for a query to meet a replica node near the file

server, it is not guaranteed. EAD replicates a file at fre-

quent requesters or traffic hubs, ensuring high hit rate. Path
replicates files at nodes along the routing path, more replica

nodes render higher possibility for a file request of meeting

a replica node. However, its efficiency is outweighed by

its prohibitively cost of overhead for keeping track of query

paths and maintaining much more file replicas.

4.2 Overhead and Load Balance of Repli-
cation Algorithm

Figure 3(b) illustrates the total number of replicas in dif-

ferent algorithms. It shows that the number of replicas in-

creases as the number of replication operations increases.

This is due to the reason that more replication operations

for a file produce more replicas. The number of replicas

of Path is excessively higher than others, and that of others

keep almost the same. It is because in each file replication

operation, a file is replicated in a single node in ServerSide,

ClientSide and EAD, but in multiple nodes along a routing

path in Path. Therefore, Path generates much higher over-

head and consumes high bandwidth for file replication and

replica maintenance.

This experiment demonstrates the load balance among

replica nodes in each replication method. Figure 4 plots the

median, 1st and 99th percentiles of node utilizations ver-

sus system utilization. Path distributes load among much

more replica nodes, so its load balance result is not com-

parable to others. Therefore, we did’t include the results

of Path into the figure. The figure demonstrates that the

99th percentile of node utilization of ServerSide is much

higher than others. It is because ServerSide relies on a small

set of nodes within a small range around the overloaded

file owner, which makes these replica nodes overloaded.

In contrast, ClientSide and EAD replicate files in widely

distributed nodes. The figure also shows that the 99th per-

centile of node utilization of EAD is constrained within 1,

while those of ClientSide and ServerSide are higher than 1

and increase with the system utilization. The results imply

that ClientSide and ServerSide incur much more overloaded

nodes due to neglect of node available capacity. In EAD, a

node sends a replication request only when it has sufficient

available capacity for a replica. Thus, EAD can keep all

nodes lightly loaded with consideration of node available

capacity.
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Figure 3. Effectiveness and overhead of file replication algorithms.
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rithm.

4.3 Effectiveness of Decentralized Adap-
tation

Figure 5 shows the effectiveness of decentralized replica

adaptation strategy in EAD. We use EADw/A and EADw/oA
to denote EAD with and without this strategy respectively.

In this experiment, the number of hot files are ranged from

50 to 10 with 10 decrease in each step. Figure 5 (a) illus-

trates that EADw/A and EADw/oA can achieve almost the

same average path length and replica hit rate. Figure 5 (b)

shows that the number of replicas of EADw/A decreases as

the number of hot files decreases, while that of EADw/oA
keeps constant. EADw/A adjusts the number of file repli-

cas adaptively based on the file query rate, such that less

popular or requested files have less file replicas and vice

versa. The results imply that EADw/A performs as well as

EADw/oA with regards to lookup efficiency and replica hit

rate, but it reduces unnecessary replicas and creates repli-

cas for hot files corresponding to query rate in order to keep

replicas worthwhile. Thus, EADw/A guarantees high replica

utilization while saves overhead for maintaining replicas of

cold files.

4.4 Performance in Churn

We evaluated the efficiency of the file replication algo-

rithms in Chord P2P system with churn. Experiment results

verified the resilience of the EAD algorithm in churn. We

run each trial of the simulation for 20T̄ simulated seconds,

where T̄ is a parameterized time period, which was set to 60

seconds. Node joins and voluntary departures are modelled

by a Poisson process as in [24] with a mean rate of R, which

ranges from 0.05 to 0.40. A rate of R = 0.05 corresponds

to one node joining and leaving every 20 seconds on aver-

age. In Chord, each node invokes the stabilization protocol

once every 30 seconds and each node’s stabilization routine

is at intervals that are uniformly distributed in the 30 sec-

ond interval. The number of replication operations when a

server is overloaded was set to 15. We specify that before

a node leaves, it also transfers its replicas to its neighbors

along with its files.
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Figure 6. Ave. path length in churn.

Figure 6 plots the average lookup path length versus

node join/leave rate. We can see that the results are con-



sistent with those in Figure 3 without churn due to the same

reasons. We can also observe that the lookup path length in-

creases slightly with the node join/leave rate. Before a node

leaves, it transfers its replicas to its neighbors. A query for

the file may pass through the neighboring replicas or other

replica nodes. Otherwise, the query needs to travel to the

file owner. Therefore, the path length increases marginally

with the node join/leave rate. Since Path has much more

replicas, a query has higher probability of meeting a replica

node. Hence, its path length does not increase as fast as

others. In summary, churn does not have significant ad-

verse impact to file replication algorithms due to P2P self-

organization mechanisms.

5 Conclusions

Traditional file replication methods for P2P file sharing

systems either are not effective enough to improve file query

efficiency or incur prohibitively high overhead. This pa-

per proposes an Efficient and Adaptive Decentralized file

replication algorithm (EAD) that chooses query traffic hubs

and frequent requesters as replica nodes to guarantee high

utilization of replicas, and high query efficiency. Unlike

current methods in which file servers keep track of repli-

cas, EAD creates and deletes file replicas by dynamically

adapting to non-uniform and time-varying file popularity

and node interest in a decentralized manner based on ex-

perienced query traffic. It leads to higher scalability and

ensures high replica utilization. Furthermore, EAD novelly

relies on exponential moving average technique to reason-

ably measure file query rate for replica management. Sim-

ulation results demonstrate the superiority of EAD in com-

parison with other file replication algorithms. It dramati-

cally reduces the overhead of file replication and produces

significant improvements in lookup efficiency. In addition,

it is resilient to P2P churn. Its low overhead and high ef-

fectiveness are particularly attractive to the deployment of

large-scale P2P file sharing systems.
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