New Approximation Algorithms for Routing with Multi-Port Terminals*

C. S. Helvig, Gabriel Robins, and Alexander Zelikovsky†

Department of Computer Science, University of Virginia, Charlottesville, VA 22903-2442
†Department of Computer Science, Georgia State University, Atlanta, GA 30303

Abstract

Previous literature on VLSI routing and wiring estimation typically assumes a one-to-one correspondence between terminals and ports. In practice, however, each “terminal” consists of a large collection of electrically equivalent ports, a fact that is not accounted for in layout steps such as wiring estimation. In this paper, we address the general problem of minimum-cost routing tree construction in the presence of multi-port terminals, which gives rise to the group Steiner minimal tree problem. Our main result is the first known approximation algorithm for the group Steiner problem with a sub-linear performance bound. In particular, for a net with \(k \) multi-port terminals, previous heuristics have a performance bound of \((k - 1) \cdot OPT\), while our construction offers an improved performance bound of \(2 \cdot (2 + \ln \frac{1}{k}) \cdot \sqrt{k} \cdot OPT\). Our Java implementation is available on the Web.

Keywords: Routing, Multi-Port Terminals, Steiner Trees, Group Steiner Problem, Combinatorial Optimization, Approximation Algorithms.

1 Introduction

Previous works on routing often assume a one-to-one correspondence between terminals and ports, either implicitly or explicitly requiring each terminal to consist of a single port. However, in actual layouts (e.g., in a gridded routing regime), a “terminal” to which a wire is to be routed can consist of a large collection of separate ports. Even though a wire may connect to any one of these ports, this degree of freedom is often not fully exploited, particularly in routing or in wiring estimation.

In this paper, we address the general problem of minimum-cost Steiner tree construction in the presence of multi-port terminals. Clearly, the problem of interconnecting a net with multi-port terminals is a direct generalization of the NP-hard Steiner problem, and is therefore itself NP-hard (i.e., in the classical Steiner problem each terminal contains exactly one port). The classical Steiner minimal tree problem is defined as follows.

The Steiner Minimal Tree (SMT) problem: given an undirected weighted graph \(G = (V, E) \) and \(M \subseteq V \), find a minimum-cost tree which spans all of \(M \).

*This work was supported by a Packard Foundation Fellowship and by National Science Foundation Young Investigator Award MIP-9457412. A preliminary version of this work has appeared in [3] [8]. The corresponding author is Professor Gabriel Robins, Department of Computer Science, University of Virginia, Charlottesville, VA 22903-2442, robins@cs.virginia.edu, (804) 982-2207, http://www.cs.virginia.edu/robins
Nodes in $V - M$ (referred to as Steiner nodes) may be optionally included in order to reduce the total tree cost. A rectilinear instance of the Steiner problem is shown in Figure 1.

![Figure 1](image)

Figure 1: (a) The minimum spanning tree (MST) and (b) the Steiner minimal tree (SMT) in the rectilinear plane. Solid dots represent Steiner nodes.

We address the generalization of the Steiner Minimal Tree problem, where rather than spanning a set of nodes, the objective is to connect groups of nodes. This problem, which models the routing of nets with multi-port terminals, is formalized as follows.

The Group Steiner Problem [9] [19]: given an undirected weighted graph $G = (V, E)$ and a family $N = \{N_1, \ldots, N_k\}$ of k disjoint groups of nodes $N_i \subseteq V$, find a minimum-cost tree which contains at least one node (i.e., port) from each group N_i.

As in the classical Steiner problem, we are allowed to include optional (i.e., Steiner) nodes, in order to reduce the cost of the tree interconnecting the groups of N. One version of the group Steiner problem, known as the *strong connectivity* version, allows different connections to the same group to attach to different nodes in that group (i.e., all the nodes of a group are implicitly connected to each other, which allows the solution to the group Steiner problem to be a forest - see Figure 2(b)). The version of the group Steiner problem that we study involves *weak connectivity*; the solution must be strictly a tree, and intra-group edges must be explicitly part of the solution (see Figure 2(a)).

![Figure 2](image)

Figure 2: (a) A feasible solution for the weak-connectivity version of the group Steiner problem. (b) A solution to the same group Steiner problem instance under the strong-connectivity assumption. Ovals represent terminals (i.e., groups), hollow dots represent ports within a terminal, and solid dots represent Steiner nodes.

The group Steiner problem captures several practical scenarios in VLSI layout design:
- Even in single-port-per-terminal scenarios, the possibility of rotating and flipping a module induces multiple locations for the given port. For a general module, there are up to eight possible orientations [19] (see Figure 3(a)), and a given terminal will induce a group of up to eight nodes in the group Steiner problem formulation\(^1\) (see Figure 3(b)). The use of “virtual” ports is mutually exclusive, and a version of the weak connectivity model applies.

- The group Steiner problem also models the pin assignment problem [15], which seeks to optimally determine pin locations on module boundaries. Usually, exactly one pin is assigned to each module [18], and the weak connectivity model applies.

- In grid-based maze routing regimes, “dot-models” or similar techniques are commonly used to create multi-node routing abstracts for each terminal within the multi-layer grid. A complicated terminal geometry can easily have 30 or more ports located on multiple fabrication layers. These ports form a group in the group Steiner problem formulation. The ports are electrically equivalent, and a routing tree may connect to more than one port of a given terminal. Hence, the strong connectivity model applies.

- On a larger length scale, multiple ports on a block boundary may be electrically equivalent by virtue of being connected inside the block. Again, the strong-connectivity group Steiner problem version applies with these sets of ports forming groups.

\[\text{Figure 3: (a) A module is rotated and flipped to induce a group of eight terminal positions, shown in (b).}\]

Despite such applications, the freedom to connect to any of multiple port locations has neither been explored in geometric or graph-based routing tree constructions, nor has it been accounted for in wiring estimation.\(^2\) In deep submicron technologies, the error incurred by approximating multiple ports with, e.g., their center of gravity can be substantial when propagated through multiple logic stages. Furthermore, instances of this problem become common when hierarchical design methodologies are applied (e.g., when global nets are partially pre-routed).

The only existing approximation algorithms for the weak group Steiner problem produce solutions \(k - 1\) times worse than optimal\(^3\) where \(k\) is the number of groups [10]. In this paper, we propose a new heuristic with an improved performance ratio\(^4\) of \(2 \cdot (2 + \ln \frac{k}{2}) \cdot \sqrt{k}\), where \(k\) is the number of groups.

\(^1\)For standard cells there are really only two (or possibly four) orientations possible.

\(^2\)Detailed maze routers implicitly exploit this degree of freedom, but their solutions may have unbounded error.

\(^3\)In contrast, the strong connectivity version, though also NP-hard, is somewhat more tractable than the weak connectivity version: by converting an instance of the strong connectivity version into an instance of the graph Steiner problem, then setting to zero the weight of every intra-group edge, we can efficiently solve the strong group Steiner problem to within a factor of 2 or less of optimal using known graph-based Steiner tree algorithms [16] [21] [22].

\(^4\)The performance ratio is an upper bound on the ratio of heuristic solution cost divided by optimal solution cost, over all problem instances (i.e., the worst-case of \(\frac{\text{cost(approx)}}{\text{cost(OPT)}}\)).
On the negative side, we show that this problem is not likely to be approximable to within polynomial time with a performance bound of less than \(\ln k \cdot \text{OPT} \) [6] [11]. This implies that one can not expect to find efficient heuristics with sub-logarithmic performance bounds. Note that in practice our heuristic produces solutions that are much better than the theoretical bound indicates. This is apparent from our experimental results and from examining actual trees produced by our implementation. Note that although our algorithms are general and apply to arbitrary weighted graphs, our implementation (and the experimental results section) uses the rectilinear metric to determine the distances between ports.

The rest of the paper is organized as follows. In Section 2, we introduce a special type of depth-bounded Steiner tree. We prove that an optimal depth-2 bounded Steiner tree approximates the optimal Steiner tree to within a factor of \(2 \cdot \sqrt{k} \). In Section 3, we present our main heuristic that approximates the optimal depth-2 Steiner tree to a \(2 + \ln \frac{k}{\epsilon} \) factor (our overall method therefore has a performance bound that is the product of these two factors). Analysis given in the Appendix shows that our heuristic cannot be improved substantially (i.e., a logarithmic factor is a lower bound). We finish Section 3 with the proof of the claimed performance bound for our main heuristic. Section 4 analyzes its time complexity, and discusses some practical enhancements. Section 5 shows how to improve the bound even further by specially treating groups of size 1. Section 6 extends our basic group Steiner approach into a bounded-radius formulation that minimizes tree cost as well as source-to-sink pathlengths in a provably-good manner. Finally, we discuss our implementation and experimental results in Section 7. A preliminary version of this work appeared in [3] [8].

2 Depth-Bounded Steiner Trees

In this section, we introduce the concept of Steiner depth-bounded\(^5\) trees. Our motivation for using depth-bounded trees is two-fold: (1) optimal depth-2-bounded trees can be used to approximate optimal group Steiner trees to within a factor of \(2 \cdot \sqrt{k} \), and (2) optimal depth-2-bounded trees in turn can be approximated efficiently, as discussed in the next section. Our overall method is thus a composition of these two approximations, and therefore enjoys a performance bound that is the product of the two corresponding bounds.

![Figure 4: Transformation of G: each terminal node \(v_i \) in G is connected to a newly-created node \(v'_i \) with a zero-cost edge (i.e., terminal nodes thus become non-terminals, and newly-created corresponding nodes replace the roles of the original terminal nodes). Note that this transformation alters G in a way that enables us to transform a solution in the modified graph back into a solution of the same cost in the unmodified graph.](image)

In general, the given graph \(G \) may violate the triangle inequality, i.e., there may be edges \((u,v)\) in \(G \) whose cost is greater than the cost of the minimum \(u-v \) path in \(G \). An optimal group Steiner tree will contain no such edges, since replacing such edges with the corresponding shortest paths will decrease the total tree cost. Therefore, without loss of generality, we replace \(G \) by its metric closure\(^6\).

\(^5\)We define the depth of a rooted tree \(T \) as the maximum number of edges in any root-to-leaf path.

\(^6\)The metric closure is defined as the complete graph where the cost of each edge \((u,v)\) is equal to the cost of the minimum \(u-v \) path in \(G \).
In order to further simplify our analysis, we also modify G as follows. For any port v_i, we create a new node v'_i and a new zero-cost edge (v_i, v'_i); we let v'_i take on the role of v_i, i.e., v'_i becomes a port and v_i becomes a non-port, as shown in Figure 4. An optimal tree in the modified graph has the same cost as an optimal tree in the original graph. Hence, this transformation allows us to seek the optimal Steiner tree in which every port is a leaf.

We define d-stars to be rooted trees of depth of at most d (see Figure 5(a)-(b)). The goal of the rest of this section is to show that for any arbitrary (but henceforth fixed) tree T with root r, there exists a low-cost 2-star spanning the leaves of T. This will imply that an optimal group Steiner tree can be approximated by a low-cost group Steiner 2-star (defined as a 2-star which spans all of the groups). Our overall strategy is to specify a low-cost 2-star and derive upper bounds on its total cost.

In deriving upper bounds on the cost of 2-stars, we will sum the costs of tree paths between nodes which are adjacent in 2-stars. Such paths are not necessarily disjoint, and the same tree edge may be counted multiple times in this sum. We refer to this situation as edge reuse (see Figure 5(c)). For the tree T, edge reuse provides a loose upper bound on the ratio $\text{cost(2-star)}/\text{cost}(T)$: if no edge is used more than j times when replacing edges of a 2-star by the corresponding paths in T, then the 2-star has cost no more than j times the cost of the tree T. Our strategy for deriving upper bounds on the cost of a 2-star is to bound its edge reuse.

More formally, given a tree T, a 1-star S_1, and a 2-star S_2 (collectively denoted S_d), let $\text{reuse}_T(S_d)$ denote the maximum number of times that any tree edge from T is used in tree paths connecting nodes adjacent in S_d. In order to establish an upper bound on the cost of a 2-star, we first select an appropriate common root r for S_1 and S_2. The following is a known result from graph theory (which we prove here for the sake of completeness).

Lemma 1 Any tree T has at least one node r, called the center, such that each connected component of $T - \{r\}$ contains at most half of the leaves of T (See Figure 6).

Proof: We direct each edge $e = (u, v)$ in T from u to v if the number of leaves in the connected component of $T - \{e\}$ containing v is strictly more than the number of leaves in the other component (See Figure 6(a)). Since T is a tree, we can start from an arbitrary node and walk along directed edges until we reach a node r without any incident outgoing edges. The node r is a center since no connected component of $T - \{r\}$ contains more leaves than the sum of the leaves in all of the other (disjoint) components.

Figure 5: (a) A 1-star, and (b) a 2-star with root r. (c) Graph edges are thin, while 2-star edges are thick; the edge e is (re)used here three times in dashed paths between nodes adjacent in the 2-star.

More formally, given a tree T, a 1-star S_1, and a 2-star S_2 (collectively denoted S_d), let $\text{reuse}_T(S_d)$ denote the maximum number of times that any tree edge from T is used in tree paths connecting nodes adjacent in S_d. In order to establish an upper bound on the cost of a 2-star, we first select an appropriate common root r for S_1 and S_2. The following is a known result from graph theory (which we prove here for the sake of completeness).

Lemma 1 Any tree T has at least one node r, called the center, such that each connected component of $T - \{r\}$ contains at most half of the leaves of T (See Figure 6).

Proof: We direct each edge $e = (u, v)$ in T from u to v if the number of leaves in the connected component of $T - \{e\}$ containing v is strictly more than the number of leaves in the other component (See Figure 6(a)). Since T is a tree, we can start from an arbitrary node and walk along directed edges until we reach a node r without any incident outgoing edges. The node r is a center since no connected component of $T - \{r\}$ contains more leaves than the sum of the leaves in all of the other (disjoint) components.

5
Placing the root \(r \) of the 1-star \(S_1 \) at a center of the tree \(T \) minimizes the edge reuse of \(S_1 \), as follows.

Lemma 2 Let \(r \) be a center of the tree \(T \) with the set of leaves \(L \). The 1-star \(S_1 \) with the root \(r \) and leaves \(L \) costs no more than \(\frac{\sqrt{L}}{2} \cdot \text{cost}(T) \).

Proof: Since \(r \) is a center of \(T \), \(\text{reuse}_T(S_1) \) is not larger than \(|L|/2 \) (See Figure 6(b)). Indeed, the reuse of an edge \(e \) of \(T \) is the number of root-to-leaf paths in \(T \) that contain \(e \). Since \(r \) is a center, any edge of \(T \) lies on at most half of all such paths. \(\square \)

![Connected component of \(T-\{r\} \)](image1)

Figure 6: (a) When a tree center is removed, no subtree has more than \(|L|/2 \) leaves. (b) When we place the root at a center of the tree, no edge is reused more than \(|L|/2 \) times (in dashed paths). In this example, the edge reuse of the 1-star is 7.

We now construct a 2-star \(S_2 \) from the tree \(T \) with cost no more than \(2 \cdot \sqrt{|L|} \cdot \text{cost}(T) \), where \(L \) is the set of leaves of \(T \). Note that a center \(r \) of the tree \(T \) will serve as a root of both \(S_1 \) and \(S_2 \). Note also that \(S_2 \) and \(T \) (and \(S_1 \)) have the same set of leaves, namely \(L \). Let \(C_i \) be connected components of \(T-\{r\} \). In order to connect nodes in different \(C_i \), we must pass through the root \(r \). Define \(T_i \) as a component \(C_i \) plus the root \(r \) and the (unique) edge between the root and \(C_i \) (Figure 6(a) shows three such components \(C_i \)). Finally, we denote by \(L_i = C_i \cap L \) the set of leaves of \(T \) that are contained in \(T_i \). Because the root \(r \) is a center of \(T \), the size of \(L_i \) is at most \(|L|/2 \) in each rooted subtree \(T_i \). We construct a 2-star \(S_2 \) for the entire tree \(T \) by taking the union of the 2-stars for each of the subtrees \(T_i \). Note that the edge reuse of \(S_2 \) in \(T \) is the maximum of the edge reuses over all \(T_i \). We define a node \(u \) as an *ancestor* of \(v \) if the path from the root to \(v \) passes through \(u \).

Now we determine an appropriate set of intermediate nodes for a 2-star \(S_2 \) in each \(T_i \). First, we label the leaves of \(T_i \) in an arbitrary depth-first manner, \(l_1, l_2, \ldots, l_{|L_i|} \). Next, we partition this sequence into fixed-size blocks of contiguously-numbered leaves. Finally, we choose the intermediate nodes of our 2-star for \(T_i \) as the set of least common ancestors\(^7\) of the leaves in each of the blocks. In our 2-star, the root is connected to these intermediate nodes, and each intermediate node is connected to the leaves of the corresponding block.

\(^7\)A common ancestor of a set of nodes is the least common ancestor if it is not an ancestor of any other common ancestor of these nodes.
Note that the edge reuse is determined by two kinds of paths: (i) paths from the root to intermediate nodes (Figure 7(a)), and (ii) paths from intermediate nodes to leaves (Figure 7(b)). The number of paths of type (i) is clearly bounded by the number of blocks, i.e., $|L_i|/b$, where b is the block size.

We now estimate the contribution to edge reuse of paths of type (ii). Since we have ordered the nodes in a depth-first manner, any node v will be a common ancestor for a sequence of contiguously-numbered leaves, say $l_{x}, l_{x+1}, ..., l_{y}$. Clearly, v is an ancestor of the least common ancestors of all blocks that are contained completely in this sequence. Because the edge between v and its parent u does not lie on the paths from the intermediate nodes to leaves of such blocks, we are concerned only with paths to the leaves outside of such blocks. Such leaves may occupy only the first or the last $b - 1$ positions in the sequence $l_{x}, ..., l_{y}$. This induces a bound of $2 \cdot (b - 1)$ on the contribution of type-(ii) paths to the reuse of edge (u, v).

![Figure 7: Triangles represent depth-first ordered subtrees. (a) Type-(i) paths which reuse the edge (u, v) terminate at intermediate nodes below v (there are no more than $|L_i|/b$ of these). (b) Type-(ii) paths which reuse the edge (u, v) terminate at leaves that lie in the leftmost and the rightmost blocks that together contain at most $2 \cdot (b - 1)$ leaves.](image)

Thus, the total edge reuse is at most $\frac{|L_i|}{b} + 2 \cdot b$. Choosing $b = \sqrt{|L_i|}/2$ yields an upper bound on edge reuse of $2 \cdot \sqrt{2 \cdot |L_i|}$. Since the root is the center of T, we have $|L_i| \leq \frac{1}{2}|L|$, and the edge reuse is at most $2 \cdot \sqrt{|L|}$. This proves that for any tree T with the set of leaves L and a center r, there is a 2-star rooted at r with the same set of leaves L, and with cost at most $2 \cdot \sqrt{|L|} \cdot \text{cost}(T)$. If we define T to be an optimal group Steiner tree with $k = |L| \leaves$, then the above argument implies that there exists a group Steiner 2-star of cost at most $2 \cdot \sqrt{k} \cdot \text{cost}(T)$, where k is the number of groups. We therefore obtain the following result.

Theorem 1 Let Opt be an optimal group Steiner tree, let k be the number of groups, and let r be a center of Opt. Then:

1. the cost of an optimal Steiner 1-star rooted at r is at most $\frac{k}{2} \cdot \text{cost}(\text{Opt})$; and
2. the cost of an optimal Steiner 2-star rooted at r is at most $2 \cdot \sqrt{k} \cdot \text{cost}(\text{Opt})$.

8Note that by the transformation described in Figure 4, at most one leaf node in each group will be spanned by an optimal group Steiner tree, and therefore we can set $k = |L|$ here.
3 A Provably-Good Heuristic

We have established that an optimal Steiner 2-star is a reasonable approximation of an optimal group Steiner tree, denoted Opt. It can be shown that even the problem of approximating an optimal Steiner 2-star is as difficult as approximating a minimum set cover (see the Appendix). Therefore, for any $\epsilon > 0$, it is unlikely that there exists a polynomial-time heuristic with performance ratio $(1 - \epsilon) \cdot \ln k$, where k is the number of groups [6]. We present an algorithm for approximating a Steiner 2-star with performance ratio $2 \ln \frac{1}{\epsilon} \approx 1.307 + \ln k$. Therefore, the overall performance bound for our Group Steiner Minimal Tree heuristic will be the product of these two factors (namely the approximation bound of 2-stars with respect to optimal, times the bound with which we can approximate 2-stars themselves).

Theorem 1 states that there exists a low-cost Steiner 2-star with the root placed in a center of an optimal group Steiner tree Opt. Although we do not know which node of the graph G is a center of Opt, this is not an obstacle: for each node r of G, we construct a low-cost Steiner 2-star $\text{Approx}_2(r)$ with root r, and then we select the least-cost $\text{Approx}_2(r)$ over all possible choices of r (see Figure 8). Thus, we only need to specify how we will construct a Steiner 2-star $\text{Approx}_2(r)$ with a given root r.

<table>
<thead>
<tr>
<th>Group Steiner heuristic for arbitrary weighted graphs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input: A graph $G = (V, E)$, a family N of k disjoint groups $N_1, \ldots, N_k \subseteq V$</td>
</tr>
<tr>
<td>Output: A low-cost tree Approx spanning at least one vertex from each group N_i</td>
</tr>
<tr>
<td>For each node $r \in V$ do</td>
</tr>
<tr>
<td>Find a low-cost 2-star $\text{Approx}_2(r)$ rooted at r intersecting each group N_i, $i = 1, \ldots, k$</td>
</tr>
<tr>
<td>Output the least-cost 2-star Approx, i.e. $\text{cost}(\text{Approx}) = \min_{r \in V} \text{cost}(\text{Approx}_2(r))$</td>
</tr>
</tbody>
</table>

Figure 8: Our main approximation algorithm for the group Steiner problem on arbitrary graphs produces a low-cost Steiner 2-star.

Let $\text{Opt}_1(r)$ be the optimal Steiner 1-star rooted at r, and let $\text{Opt}_2(r)$ be the optimal Steiner 2-star rooted at r. The main idea in constructing $\text{Approx}_2(r)$ is to successively refine an initial approximation coinciding with $\text{Opt}_1(r)$. There are two advantages to using $\text{Opt}_1(r)$ as an initial approximation for $\text{Opt}_2(r)$: first, unlike $\text{Opt}_2(r)$, the 1-star $\text{Opt}_1(r)$ can be computed efficiently; secondly, the cost of $\text{Opt}_1(r)$ is bounded by $\frac{k}{2} \cdot \text{cost}(\text{Opt})$ if r is a center of Opt (see Theorem 1). Therefore, to measure the approximation quality of a 2-star, we will compare its cost to the cost of an optimal 1-star with the same root and with leaves taken from the same groups spanned by the 2-star.

Formally, let S be a 2-star with a root $v \in V$ and let $\text{groups}(S)$ be the set of groups spanned by S. We denote by S' an optimal 1-star with the root r connected to $\text{groups}(S)$ (see Figure 9). We define the norm of S as $\text{norm}(S) = \text{cost}(S)/\text{cost}(S')$.

In order to specify our low-cost 2-star $\text{Approx}_2(r)$, we need to select the intermediate nodes and also to determine the set of groups that should be connected to each intermediate node. It is therefore natural to represent $\text{Approx}_2(r)$ as a union of subtrees, each consisting of a single intermediate node that is connected to the root as well as to certain leaf ports. Such rooted subtrees will be called partial stars (see Figure 9(a)).

We select the partial stars for $\text{Approx}_2(r)$ in the following greedy manner. First, we find a partial star P with the minimum norm (i.e., the minimum ratio of the cost of P over the cost of the corresponding 1-star). Next, we remove the groups that it spans (i.e., $\text{groups}(P)$) from the set of all
groups. Finally, we determine the next partial star with minimum norm, and iterate until all groups are spanned. Figure 10 gives a formal definition of this procedure.

In order to complete the description of our heuristic, we will next present an efficient procedure that, given a root \(r \) and set of groups \(M \), finds a minimum-norm partial star \(P(r, M) \) rooted at \(r \) and spanning some of the groups in \(M \). This procedure is formally described in Figure 12. Note that in this procedure we use \(\text{cost}(u, N_i) \) to denote the cost of the shortest edge between \(u \) and any node in group \(N_i \). Figure 11 illustrates our main heuristic from Figure 8.

Rooted Steiner 2-star Heuristic

| Input: A graph \(G = (V, E) \), a family \(N \) of \(k \) disjoint groups \(N_1, \ldots, N_k \subseteq V \) and a root \(r \in V \) |

| Output: A low-cost 2-star \(\text{Approx}_2(r) \) with the root \(r \) intersecting each group \(N_i \) |

\[
\begin{align*}
\text{Approx}_2(r) & \leftarrow \{r\} \\
N' & \leftarrow N / * \text{ We begin with all groups remaining } * / \\
\text{While } N' \neq \emptyset & \text{ do} \\
& \text{ Find a partial star } P = P(r, N') \text{ with the minimum norm (see Figure 12)} \\
& N' \leftarrow N' - \text{groups}(P) \\
& \text{Approx}_2(r) \leftarrow \text{Approx}_2(r) \cup P \\
\text{Output } & \text{Approx}_2(r)
\end{align*}
\]

Figure 10: The greedy heuristic for a given fixed root. At each iteration of the loop, we add the minimum-norm partial 2-star to the solution, and remove its groups from future consideration. The algorithm terminates when no groups remain to be spanned. At this point, all groups are in the solution, which is the output of this heuristic.

For the remainder of this section, we analyze our heuristic, which is formally described in Figures 8, 10 and 12. Lemma 3 establishes the correctness of the Minimum-Norm Partial Star Algorithm (of
Figure 11: Given an instance of the group Steiner problem, for each possible root r our heuristic: (a) finds the optimal 1-star, (b) finds the minimum-norm partial star (shaded region), (c) stores this star in the solution and removes its groups from future consideration, (d) finds the next minimum-norm partial star (shaded region), (e) repeat step (c) for the new partial star, and finally (f) finds the last minimum-norm partial star and outputs the union of all stored partial stars.

Figure 12), proving that it actually finds the minimum-norm partial star. Lemma 4 yields a performance ratio for the Rooted Steiner 2-star Heuristic (see Figure 10). Together with Theorem 1, this will imply our main result, namely Theorem 2.

Lemma 3 Given a family $M \subseteq N$ of groups, the Minimum-Norm Partial Star Algorithm (Figure 12) outputs a minimum-norm partial star.
Minimum-Norm Partial Star Algorithm

<table>
<thead>
<tr>
<th>Input: A graph $G = (V, E)$, a family M of k disjoint groups $N_1, \ldots, N_k \subseteq V$ and a root $r \in V$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output: The minimum-norm partial star $P(r, M)$ with the root r and leaves from some groups of M</td>
</tr>
</tbody>
</table>

For each $v \in V$ **do**

1. Sort $M = \{N_1, \ldots, N_k\}$ such that $\frac{\text{cost}(v, N_1)}{\text{cost}(r, N_i)} \leq \frac{\text{cost}(v, N_{i+1})}{\text{cost}(r, N_{i+1})}$

2. Find $j \in \{1, \ldots, k\}$ that minimizes $\text{norm}(v) = \frac{\text{cost}(r, v) + \sum_{i=1}^{j} \text{cost}(v, N_i)}{\sum_{i=1}^{j} \text{cost}(r, N_i)}$

3. $M(v) \leftarrow \{N_1, \ldots, N_j\}$

Find v with the minimum $\text{norm}(v)$

Output the partial star $P(r, M)$ with the intermediate node v adjacent to the root r and groups $M(v)$

Figure 12: Our algorithm for finding a minimum-norm partial star. For each candidate v for the intermediate node, we sort groups N_i according to the potential improvement of inserting v between the root r and each group. Then, we add consecutive groups from the list while the addition decreases the norm of the partial star.

Proof: Let v be the intermediate node of the minimum-norm partial star P with root r. The Minimum-Norm Partial Star Algorithm (of Figure 12) sorts the family of groups $M \in \{N_1, \ldots, N_{|M|}\}$ such that for any i from $1, \ldots, |M|$:

$$\frac{\text{cost}(v, N_i)}{\text{cost}(r, N_i)} \leq \frac{\text{cost}(v, N_{i+1})}{\text{cost}(r, N_{i+1})}$$

We exploit the ratio property\(^9\) which states that $a/b \leq c/d$ if and only if $a/b \leq (a+c)/(b+d) \leq c/d$ for any positive a, b, c, d. Let N_j be the last group (in the sorted family of groups) which is connected to v in P. Since P is optimal, disconnecting v from N_j can only increase the norm of P. Let P' denote the optimal 1-star corresponding to P. Then:

$$\text{norm}(P) = \frac{\text{cost}(P)}{\text{cost}(P')} \leq \frac{\text{cost}(P) - \text{cost}(v, N_j)}{\text{cost}(P') - \text{cost}(r, N_j)} = \frac{\text{cost}(v, N_j) - \text{cost}(P)}{\text{cost}(r, N_j) - \text{cost}(P')}$$

By the ratio property, this implies:

$$\frac{\text{cost}(P) + (\text{cost}(v, N_j) - \text{cost}(P))}{\text{cost}(P') + (\text{cost}(r, N_j) - \text{cost}(P'))} \leq \frac{\text{cost}(P) - \text{cost}(v, N_j) - \text{cost}(P')}{\text{cost}(r, N_j) - \text{cost}(P') - \text{cost}(P') - \text{cost}(r, N_j)}$$

and therefore:

\[^9\text{The proof of the property is as follows: } \frac{a}{b} \leq \frac{c}{d} \text{ if and only if } ad \leq bc \text{ which is true if and only if both } ad + cd \leq bc + cd \text{ and } ad + ab \leq bc + ab \text{ which holds if and only if } \frac{a}{b} \leq \frac{c}{d} + \frac{d}{d}. \text{ We can similarly obtain the analogous form } \frac{c}{d} \leq \frac{a}{b} \text{ if and only if } \frac{a}{b} \leq \frac{c}{d}.\]
\[
\frac{\text{cost}(v, N_j)}{\text{cost}(r, N_j)} \leq \frac{\text{cost}(P)}{\text{cost}(P')} \tag{1}
\]

It is sufficient to show that if we connect \(v \) to the contiguous sequence of groups \(N_1, N_2, \ldots, N_j \), then the norm of \(P \) may only decrease. Let \(v \) and a group \(N_i \) with \(i < j \), be non-adjacent in \(P \). Then we have:

\[
\frac{\text{cost}(v, N_i)}{\text{cost}(r, N_i)} \leq \frac{\text{cost}(v, N_j)}{\text{cost}(r, N_j)} \leq \frac{\text{cost}(P)}{\text{cost}(P')}
\]

The ratio property together with inequality (1) yields:

\[
\frac{\text{cost}(P) + \text{cost}(v, N_i)}{\text{cost}(P') + \text{cost}(r, N_i)} \leq \frac{\text{cost}(P)}{\text{cost}(P')}
\]

Thus, connecting \(v \) to \(N_i \) cannot increase the norm of \(P \). \(\square \)

Lemma 3 allows us to substitute the Minimum-Norm Partial Star Algorithm of Figure 12 into the Rooted Steiner 2-star Heuristic of Figure 10. With the algorithm completely described, we are now ready to prove bounds on its performance.

Lemma 4 Let \(\text{Opt}_d(r) \), \(d = 1, 2 \), be an optimal Steiner \(d \)-star rooted at \(r \). The cost of the output of the Rooted Steiner 2-star Heuristic (Figure 10) is at most:

\[
\text{cost(Approx}_2(r)) \leq \left(\ln \frac{\text{cost(Opt}_1(r))}{\text{cost(Opt}_2(r))} + 2 \right) \cdot \text{cost(Opt}_2(r))
\]

Proof: To prove the lemma, we must compare the optimal 2-star rooted at \(r \) to the approximate solution produced by our heuristic. Since the root \(r \) is fixed, we will omit it from the notation in the proof. The optimal 2-star \(\text{Opt}_2 \) can be partitioned into partial stars denoted \(R_1, \ldots, R_s \). The approximate Steiner 2-star \(\text{Approx}_2 \) is a union of \(t \) minimum-norm partial stars \(P_1, P_2, \ldots, P_t \) selected by the Rooted Steiner 2-star Heuristic.

Our algorithm works by greedily choosing partial stars, removing the groups spanned by the newly chosen partial star, and iterating until no groups remain. At each iteration, the algorithm chooses a minimum-norm partial star \(P_i \) with the greatest improvement over the corresponding optimal one-star (hereafter denoted \(P'_i \)). Let \(C_i \) denote the cost of the optimal Steiner 1-star at the \(i \)th iteration of the loop when groups \(\text{groups}(P_1) \cup \ldots \cup \text{groups}(P_i) \) have been removed. Recall that \(\text{groups}(P_i) \) denotes the set of groups that are spanned by the partial star \(P_i \). In the first iteration, we have \(C_0 = \text{cost(Opt}_1) \).

Inductively, we obtain:

\[
C_i = C_{i-1} - \text{cost}(P'_i), \quad i = 1, \ldots, t
\tag{2}
\]

We may consider the partial stars of the optimal Steiner 2-star, \(R_1, \ldots, R_s \), to be sorted by non-decreasing order of their norms. Applying the ratio property, we obtain:

\[
\text{norm}(R_1) \leq \frac{\sum_{j=1}^{s} \text{cost}(R_j)}{\sum_{j=1}^{s} \text{cost}(R'_j)} = \frac{\text{cost(Opt}_2)}{C_0}
\]

12
Figure 13: The rooted Steiner 2-star heuristic (of Figure 10) iteratively modifies the problem instance by repeatedly removing groups associated with minimum-norm partial stars P_i. The cost of the optimal 1-star C_0 originally exceeds (or is equal to) the cost of the optimal 2-star $\text{cost}(\text{Opt}_2)$, but finally becomes equal to zero at step t. Therefore, there exists an n between 1 and t such that $\text{cost}(\text{Opt}_1)$ drops to strictly less than $\text{cost}(\text{Opt}_2)$ between steps n and $n+1$.

Therefore, by our greedy choice of P_1, we have:

$$\frac{\text{cost}(P_1)}{\text{cost}(P_1')} = \text{norm}(P_1) \leq \text{norm}(R_1) \leq \frac{\text{cost}(\text{Opt}_2)}{C_0}$$

After the removal of groups(P_1) the cost of the Steiner 1-star rooted at r reduces to $C_1 = C_0 - \text{cost}(P_1')$, and we find the optimal Steiner 2-star Opt_2 over the remaining groups. We compare P_2 with R_1' to get:

$$\frac{\text{cost}(P_2)}{\text{cost}(P_2')} = \text{norm}(P_2) \leq \text{norm}(R_1') \leq \frac{\text{cost}(\text{Opt}_2)}{C_1} \leq \frac{\text{cost}(\text{Opt}_2)}{C_1}$$

Applying this observation inductively, we get:

$$\frac{\text{cost}(P_i)}{\text{cost}(P_i')} \leq \frac{\text{cost}(\text{Opt}_2)}{C_{i-1}}, \quad i = 1, ..., t$$

$$\text{cost}(P_i') \geq \frac{C_{i-1} \cdot \text{cost}(P_i)}{\text{cost}(\text{Opt}_2)} \quad (3)$$

Substituting relationship (3) into relationship (2) gives us:

$$C_t \leq C_{t-1} \left(1 - \frac{\text{cost}(P_t)}{\text{cost}(\text{Opt}_2)}\right)$$

Unraveling the inequalities above, we obtain:

$$C_n \leq C_0 \prod_{i=1}^{n} \left(1 - \frac{\text{cost}(P_i)}{\text{cost}(\text{Opt}_2)}\right)$$

$$\frac{C_0}{C_n} \geq \left[\prod_{i=1}^{n} \left(1 - \frac{\text{cost}(P_i)}{\text{cost}(\text{Opt}_2)}\right)\right]^{-1}$$
Taking the natural logarithm of both sides, we get:

\[
\ln \frac{C_0}{C_n} \geq - \ln \left(\prod_{i=1}^{n} \left(1 - \frac{\text{cost}(P_i)}{\text{cost}(\text{Opt}_2)} \right) \right) = - \sum_{i=1}^{n} \ln \left(1 - \frac{\text{cost}(P_i)}{\text{cost}(\text{Opt}_2)} \right)
\]

Using the fact that \(\ln(1 + x) \leq x\) and thus \(\ln(1 - x) \leq -x\), we conclude:

\[
\ln \frac{C_0}{C_n} \geq \sum_{i=1}^{n} \frac{\text{cost}(P_i)}{\text{cost}(\text{Opt}_2)} \tag{4}
\]

Since \(C_1 = 0\), there exists an \(n\) such that \(C_n > \text{cost}(\text{Opt}_2) \geq C_{n+1}\) (see Figure 13). Note that \(\text{cost}(P_{n+1}) \leq C_n\). Therefore, inequality (3) yields:

\[
\frac{\text{cost}(P_{n+1})}{\text{cost}(\text{Opt}_2)} \leq \frac{\text{cost}(P_{n+1})}{C_n} \leq 1 \tag{5}
\]

The performance ratio of the Rooted Steiner 2-star Heuristic can be bounded as follows:

\[
\frac{\text{cost(Approx}_2)}{\text{cost(Opt}_2)} = \frac{\sum_{i=1}^{t} \text{cost}(P_i)}{\text{cost}(\text{Opt}_2)} \leq \frac{\sum_{i=1}^{n} \text{cost}(P_i) + \text{cost}(P_{n+1}) + C_{n+1}}{\text{cost}(\text{Opt}_2)} \leq \frac{\sum_{i=1}^{n} \text{cost}(P_i)}{\text{cost}(\text{Opt}_2)} + \frac{\text{cost}(P_{n+1})}{\text{cost}(\text{Opt}_2)} + \frac{C_{n+1}}{\text{cost}(\text{Opt}_2)}
\]

Finally, because of inequalities (4) and (5) and because \(\text{cost}(\text{Opt}_2) \geq C_{n+1}\) (see Figure 13), we get:

\[
\frac{\text{cost(Approx}_2)}{\text{cost(Opt}_2)} \leq \ln \frac{C_0}{C_n} + 1 + 1 \leq \ln \frac{\text{cost}(\text{Opt}_1)}{\text{cost}(\text{Opt}_2)} + 2
\]

Together with Theorem 1, Lemma 4 implies our main result:

Theorem 2 The group Steiner heuristic (Figures 8, 10, 12) solves the group Steiner minimal tree problem with performance ratio \(2 \cdot (2 + \ln \frac{1}{2} \cdot \sqrt{k})\), where \(k\) is the number of groups.

Proof: Our overall group Steiner heuristic (Figure 8) runs the rooted Steiner 2-Star heuristic (Figure 10) for all possible roots \(r \in V\). If the root is a center \(r_c\) of the optimal group Steiner tree \(\text{Opt}\), then from Theorem 1, we know that \(\text{cost}(\text{Opt}_1(r_c)) \leq \frac{k}{2} \cdot \text{cost}(\text{Opt}) \leq \frac{k}{2} \cdot \text{cost}(\text{Opt}_2(r_c))\), where \(k\) is
the number of groups. Therefore, Lemma 4 implies that the cost of the tree produced by our main algorithm is at most $2 + \ln \frac{k}{\varepsilon}$ times the cost of the optimal Steiner 2-star. Finally, using Theorem 1, we obtain a group Steiner tree that costs no more than $2 \cdot (2 + \ln \frac{k}{\varepsilon}) \cdot \sqrt{k}$ times the optimum.

4 Runtime and Practical Optimizations

In this section, we first estimate the runtime of our heuristic, and then we propose several ways to improve its runtime and performance in practice. Let n denote the total number of ports in all of the groups, i.e., $n = |\bigcup_{i=1}^{k} N_i|$. Let α denote the time complexity of computing all-pairs shortest paths in the graph $G = (V, E)$. As part of our preprocessing, we shall also compute in time $O(n \cdot |V|)$ all vertex-to-group distances (i.e., distances between each vertex and the closest port in each group). The time complexity of the Minimum-Norm Partial Star Heuristic (Figure 12) is $O(|V| \cdot k \cdot \log k)$. Therefore, the Rooted 2-star Heuristic (Figure 10) has runtime $O(|V| \cdot k^2 \cdot \log k)$, where k is the number of groups. Thus we obtain the following result:

Theorem 3 The total runtime of the group Steiner heuristic (Figure 8) is $O(\alpha + |V|^2 \cdot k^2 \cdot \log k)$, where k is the number of groups, and α is the time complexity of computing all-pairs shortest paths.

The performance ratios derived in previous sections pertain to worst-case analysis. However, in practice we are also interested in the average-case behavior of our heuristics, in terms of both the solution quality and the runtime. One such practical improvement entails omitting the removal of the set of groups spanned by the minimum-norm 2-star (see the inner loop of the algorithm in Figure 10). Instead, every time we accept an intermediate node, we update the best possible current star by calculating the distance to a particular group, not from the root, but rather from the closest already-accepted intermediate node. We then use this distance to sort the groups in the minimum-partial star algorithm (Figure 12).

Another practical enhancement entails computing a group minimum spanning tree instead of a group Steiner minimal tree, that is, a minimum spanning tree for a set of nodes containing exactly one port from each group. It can be shown that the optimal group minimum spanning tree is at most twice as long as the optimal group Steiner minimal tree. Thus, in approximating the group Steiner minimal tree by a group minimum spanning tree, we lose only a factor of 2, which does not asymptotically increase the overall bound of $2 \cdot (2 + \ln \frac{k}{\varepsilon}) \cdot \sqrt{k}$, yet yields substantial savings in runtime.

We may further modify our algorithm with a post-processing step which finds the minimum spanning (or approximate Steiner) tree for the set of intermediate nodes and ports chosen by the group Steiner heuristic (Figure 8). We may also make local (one at a time) node substitutions in groups to re-arrange the tree topology and reduce the overall cost.

Although provably-good heuristics are frequently outperformed by local optimization methods, the output of the former can serve as a good starting point for local-improvement post-processing schemes. For example, it was shown that Christofides’ heuristic (i.e., the best-known heuristic for traveling salesperson in graphs) also provides excellent initial traveling salesperson tours for further local rearrangements [17] [20].

5 Instances with Degenerate Groups

We now show how to more effectively handle instances of the group Steiner problem with some degenerate groups, i.e., groups of size 1. We will see that treating degenerate groups differently will yield
improvements in solution quality as well as in runtime.

The degenerate groups by themselves induce an instance of the classic Steiner problem, and such an instance can be approximated efficiently by known methods (with a constant performance ratio). Thus, to solve the SMT problem for degenerate groups, we may choose a provably-good heuristic from among the numerous existing ones [4] [7] [12] [13] [16] [21]. For example, in time $O(|V|^3)$ we may find a Steiner tree which is at most $\frac{11}{6}$ times longer than the optimal [22]. The remaining issue now is how to combine the Steiner minimal tree over the degenerate groups with a tree spanning the other, non-degenerate groups.

More formally, let $N = M_1 \cup M_2$ be a partition of all the groups in N into those containing one terminal (M_1), and those containing at least two terminals (M_2). We define the combined group Steiner heuristic as follows. First, we find the usual Steiner tree Approx_1 for the terminals M_1 using the algorithm from [22]. Next, using our group Steiner heuristic (Figure 8), we find the group Steiner tree Approx_2 for the family of groups that includes M_2 and a single arbitrary group from M_1. Finally, we output a minimum spanning tree over the union $\text{Approx}_1 \cup \text{Approx}_2$ (see Figure 14).

![Figure 14](image)

Figure 14: We span the set of degenerate groups (M_1) with an approximate Steiner tree (on the right). Then we span all non-degenerate groups (M_2), together with an arbitrary degenerate group, with a group Steiner tree.

If the number of degenerate groups is large, then the combined group Steiner heuristic will enjoy considerable runtime savings as compared to the group Steiner heuristic (of Figure 8). Moreover, the following theorem shows that this heuristic also enjoys an improved performance bound.

Theorem 4 The combined group Steiner heuristic solves the group Steiner problem with a performance ratio of at most:

$$\frac{11}{6} + 2 \cdot (2 + \ln \frac{k'}{2}) \cdot \sqrt{k'}$$

where M_2 is the set of groups of size at least 2, and $k' = |M_2| + 1$.

Proof: The optimal Steiner tree for M_1, denoted by Opt_1, cannot cost more than the optimal group Steiner tree (denoted by Opt), i.e.

$$\text{cost}(\text{Approx}_1) \leq \frac{11}{6} \cdot \text{cost}(\text{Opt}_1) \leq \frac{11}{6} \cdot \text{cost}(\text{Opt})$$
Moreover, if we remove from N all but 1 of the degenerate groups, then the cost of the optimal group Steiner tree over the remaining groups can not be more than Opt.

$$cost(Approx_2) \leq 2 \cdot (2 + \ln \frac{k'}{2}) \cdot \sqrt{k'} \cdot cost(\text{Opt}_2) \leq 2 \cdot (2 + \ln \frac{k'}{2}) \cdot \sqrt{k'} \cdot cost(\text{Opt})$$

Therefore, the cost of the combined tree (i.e., the union of the two trees constructed above) is at most:

$$cost(Approx_1 \cup Approx_2) \leq \left[\frac{11}{6} + 2 \cdot (2 + \ln \frac{k'}{2}) \cdot \sqrt{k'} \right] \cdot cost(\text{Opt})$$

\[\square \]

6 Bounded-Radius Group Steiner Trees

The objective of delay-minimization can induce wiring geometries that are substantially different from those dictated by an optimal-area objective, particularly in deep submicron regimes. This has motivated a number of bounded-radius\(^{10}\) routing constructions \[1\] \[2\] \[5\] \[13\] \[14\]. Our basic group Steiner tree approach can be easily extended to a bounded-radius construction, thereby yielding routing trees with source-to-sink path lengths bounded by a user-specified parameter.

For example, we can utilize the tree produced by our main algorithm (of Figure 8) as the starting point in the bounded-radius / bounded-cost construction of \[5\]. For an arbitrary instance of the group Steiner problem (with k groups), this hybrid approach yields a routing tree with radius $(1 + \epsilon) \cdot \text{OPT}_\text{radius}$ and total cost $(1 + \frac{\epsilon}{2}) \cdot 2 \cdot (2 + \ln \frac{k}{2}) \cdot \sqrt{k} \cdot \text{OPT}_\text{cost}$ for any user-specified parameter $\epsilon > 0$.

7 Experimental Results

We have implemented our heuristic for the group Steiner problem using the Java programming language. Our implementation can be executed on the Web at:

http://www.cs.virginia.edu/robins/groupSteiner

We compared our heuristics with the heuristic proposed by Reich & Widmayer \[19\], henceforth referred to as “RW”. Their heuristic begins by first finding the minimum spanning tree T for the entire set of nodes of all the groups. If a leaf node is not the last member of its group in the tree T, then it may be removed. The heuristic then repeatedly deletes such a leaf node which is incident to the longest edge among all such nodes (see Figure 15 for a formal description of this algorithm).

Table 1 compares two versions of our heuristic (Figure 8) to the RW algorithm \[19\] (Figure 15). We created each group by first defining a randomly-placed square area of predetermined size, and then uniformly and independently distributing nodes inside this square-shaped area. We varied the predetermined group areas among 10\%, 50\%, and 100\% of the overall square routing region. All table numbers represent the average relative improvement over 100 trials, given as a percent improvement over the tree cost of the RW algorithm \[19\] (negative numbers represent disimprovements).

\[^{10}\text{The radius of a graph is defined as the maximum pathlength of any shortest source-sink path. Note that 2-stars implicitly have a radius bound of } 2 \cdot OPT, \text{ although an MST post-processing step does not preserve this bound.}\]
The RW heuristic for the group Steiner problem [19]

| Input: A graph $G = (V, E)$, k disjoint groups $N_1, \ldots, N_k \subseteq V$ |
| Output: A low-cost tree T spanning ≥ 1 nodes from each N_i |

$M \leftarrow \bigcup_{i=1}^{k} N_i$
Find minimum spanning tree T over M, i.e. $T \leftarrow \text{MST}(M)$
Repeat forever
 For each leaf l node of T do
 Find the group $N(l) = N_i$ containing l
 If $N(l) \cap T = l$, then mark l
 If all leaves of T are marked, then exit repeat
 Find an unmarked leaf l incident to the longest edge
 Remove l from T, i.e. $T \leftarrow T - l$
 Output the tree T

Figure 15: The RW heuristic for the group Steiner problem [19].

In the context of VLSI layout, we are primarily concerned with the rectilinear (or Manhattan) plane, where the cost of routing between two nodes (a_x, a_y) and (b_x, b_y) is defined to be $|a_x - b_x| + |a_y - b_y|$. While our implementation uses the rectilinear metric to determine the distances between ports, our algorithms are general and apply to arbitrary weighted graphs, including the rectilinear case.

The first version of the group Steiner heuristic (Figure 8) that we implemented has the following three modifications:

1. Intermediate nodes are selected strictly from among the ports (i.e., all of the constructions benchmarked are spanning trees - they do not use Steiner nodes other than ports);
2. The root of the 2-star is selected from a single randomly chosen group;
3. After accepting an intermediate node in the inner loop of Figure 12, the node is removed from further consideration in subsequent iterations.

The second version that we implemented is a hybrid approach, which is our main algorithm discussed above, except the solutions are then post-processed with a minimum spanning tree algorithm (i.e., we output the minimum spanning tree over the nodes selected by the modified heuristic described above). The table column labeled “2-star” shows the average percent improvements of our modified heuristic over the RW algorithm, while data for the hybrid approach is given in the column labeled “2-star + MST”. As can be seen from the table, the hybrid approach significantly outperforms the RW algorithm as the group sizes and the group areas increase.

8 Conclusion

We have addressed the problem of minimum-cost routing of multi-port terminals, a direct generalization of the Steiner problem. Our main result is the first known heuristic with a sub-linear performance bound. In particular, for a net with k multi-port terminals, our construction has a performance bound of $2 \cdot (2 + \ln \frac{1}{\epsilon}) \cdot \sqrt{k} \cdot OPT$. Our implementation and benchmark results indicate that our approach is effective in practice. Future work includes further reducing the bounds, and also improving the time complexity of the algorithms.
Area of each group is 10% of total routing region

<table>
<thead>
<tr>
<th>Number of groups</th>
<th>Group size = 3</th>
<th>Group size = 5</th>
<th>Group size = 8</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2-star</td>
<td>2-star +MST</td>
<td>2-star</td>
</tr>
<tr>
<td>5</td>
<td>4.0</td>
<td>4.0</td>
<td>5.0</td>
</tr>
<tr>
<td>10</td>
<td>-6.2</td>
<td>4.6</td>
<td>-2.0</td>
</tr>
<tr>
<td>20</td>
<td>-23.0</td>
<td>6.5</td>
<td>-14.6</td>
</tr>
<tr>
<td>30</td>
<td>-40.0</td>
<td>8.0</td>
<td>-32.2</td>
</tr>
<tr>
<td></td>
<td>-52.2</td>
<td>9.8</td>
<td>-34.8</td>
</tr>
<tr>
<td>Average</td>
<td>-25.5</td>
<td>6.6</td>
<td>-15.7</td>
</tr>
</tbody>
</table>

Area of each group is 50% of total routing region

<table>
<thead>
<tr>
<th>Number of groups</th>
<th>Group size = 3</th>
<th>Group size = 5</th>
<th>Group size = 8</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2-star</td>
<td>2-star +MST</td>
<td>2-star</td>
</tr>
<tr>
<td>3</td>
<td>10.2</td>
<td>10.2</td>
<td>15.2</td>
</tr>
<tr>
<td>5</td>
<td>4.5</td>
<td>10.4</td>
<td>16.4</td>
</tr>
<tr>
<td>10</td>
<td>-3.4</td>
<td>15.2</td>
<td>9.0</td>
</tr>
<tr>
<td>20</td>
<td>-21.9</td>
<td>14.5</td>
<td>-7.2</td>
</tr>
<tr>
<td>30</td>
<td>-28.8</td>
<td>16.7</td>
<td>-8.5</td>
</tr>
<tr>
<td>Average</td>
<td>-7.9</td>
<td>13.4</td>
<td>5.0</td>
</tr>
</tbody>
</table>

Area of each group is 100% of total routing region

<table>
<thead>
<tr>
<th>Number of groups</th>
<th>Group size = 3</th>
<th>Group size = 5</th>
<th>Group size = 8</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2-star</td>
<td>2-star +MST</td>
<td>2-star</td>
</tr>
<tr>
<td>3</td>
<td>13.9</td>
<td>13.9</td>
<td>28.0</td>
</tr>
<tr>
<td>5</td>
<td>11.8</td>
<td>17.7</td>
<td>25.9</td>
</tr>
<tr>
<td>10</td>
<td>-1.9</td>
<td>14.1</td>
<td>16.8</td>
</tr>
<tr>
<td>20</td>
<td>-13.9</td>
<td>18.0</td>
<td>6.6</td>
</tr>
<tr>
<td>30</td>
<td>-22.2</td>
<td>28.8</td>
<td>-1.6</td>
</tr>
<tr>
<td>Average</td>
<td>-2.5</td>
<td>18.5</td>
<td>15.1</td>
</tr>
</tbody>
</table>

Table 1: Experimental results: all numbers represent the average percent improvement over 100 trials, with respect to the cost of the output tree of the RW algorithm [19] (negative numbers represent disimprovements).

9 Acknowledgments

The authors are grateful to Douglass Bateman for help with the Java implementation, and to Andrew Kahng and Sarah Friend for their valuable feedback and discussions.
References

20

Appendix: Group Steiner Tree Approximation Complexity

It is known that the group Steiner tree problem is not easier to approximate than the set cover problem [11]. Combining this result with the recent result of Feige [6], we obtain the following:

Theorem 5 Unless \(NP \subseteq DTIME[n^{\log \log n}] \), the group Steiner tree cannot be approximated to a factor of better than \((1 - o(1)) \cdot \ln k\), where \(k \) is the number of groups.

Now we will show that even approximating depth-2 group Steiner tree with the given root \(r \) is not easier than approximating the set cover problem. On the other hand, in Section 3 we described a Steiner 2-star heuristic (Figure 10) for finding a depth-2 group Steiner tree with the approximation ratio \(2 + \ln \frac{1}{\lambda} \). We therefore conclude that set cover and finding depth-2 group Steiner tree have the same approximation complexity.

Theorem 6 Unless \(NP \subseteq DTIME[n^{\log \log n}] \), a depth-2 group Steiner tree with the given root \(r \) cannot be approximated to a factor of better than to \((1 - o(1)) \ln k\) where \(k \) is the number of groups.

Proof: An instance \(I \) of the set cover problem consists of a finite set \(X = \{x_1, \ldots, x_n\} \) and a family of subsets of \(X \), namely \(P = \{p_1, \ldots, p_m\} \subseteq 2^X \). The set cover problem seeks a minimum-size subfamily \(M \subseteq P \) that covers \(X \), i.e., such that \(X \subseteq \bigcup\{p_i | p_i \in M\} \). In order to prove the theorem, we will give polynomial-time \(L \)-reduction from the set cover problem to the group Steiner problem. Formally, we will construct an instance \(I' \) of the group Steiner problem (i.e., a graph \(G \) with a node \(r \) and groups of terminals \(N_i, i = 1, \ldots, k \)), such that

1. any subfamily \(M \subseteq P \) that covers \(X \) will correspond to a Steiner 2-star \(M' \) rooted at \(r \) for \(I' \) such that \(\text{cost}(M') = |M| \),
2. any Steiner 2-star \(M' \) rooted at \(r \) for \(I' \) will correspond to a subfamily \(M \subseteq P \) that covers \(X \) such that \(\text{cost}(M') = |M| \), and
3. given \(I \), the corresponding \(I' \) can be found in polynomial time and the correspondence \(M \leftrightarrow M' \) is also polynomial.

First, we construct a graph \(G \) for the instance \(I' \). The node set of \(G \) consists of the pairs \((i, j) \) such that \(x_i \in p_j \) and an auxiliary pair \(r = (0, 0) \). The cost of an edge between \((i, j) \) and \((i', j') \) equals to 0 if \(j = j' \) and 1 otherwise. Given \(i = 1, \ldots, k \) the group of terminals \(N_i \) consists of all pairs \((i, j) \). Now we are ready to prove (1-3).

1. Given \(M \subseteq P \), in each \(p_j \in M \) we fix one element \(x_i \in p_j \). In the 2-star \(M' \), we connect each such node \((i, j) \) with the root \(r = (0, 0) \) and all nodes that are within distance 0 from \((i, j) \). Clearly, if \(M \) covers the entire set \(X \), then the 2-star \(M' \) intersects all groups. Moreover, \(M' \) contains exactly \(|M| \) edges of cost 1 (they are incident to the root \(r \)).
2. Given a Steiner 2-star \(M' \), we build a subfamily \(M \) from the sets \(p_j \)'s for which there are intermediate nodes \((i, j) \) in the 2-star \(M' \). Clearly if \(M' \) intersects all groups, then \(M \) covers the entire set \(X \), and the number of sets in \(M \) is equal to the number of intermediate nodes of \(M' \) which is the cost of \(M' \).
3. Clearly, all reductions above can be done in polynomial time. \(\square \)
Author Biographies
for “New Approximation Algorithms for Routing with Multi-Port Terminals”
by C. S. Helvig, Gabriel Robins, and Alexander Zelikovsky

Gabriel Robins is Associate Professor in the Department of Computer Science at the University of Virginia, where he received a Packard Foundation Fellowship, a National Science Foundation Young Investigator Award, a University Teaching Fellowship, an All-University Outstanding Teaching Award, a Faculty Mentor Award, and the Walter N. Munster endowed chair. He completed his Ph.D. in Computer Science in 1992 at UCLA, where he received an IBM Fellowship and a Distinguished Teaching Award. Professor Robins’s primary area of research is VLSI CAD, with emphasis on physical design. He co-authored a book on high-performance routing as well as over seventy refereed papers, including a Distinguished Paper at the 1990 IEEE International Conference on Computer-Aided Design. Professor Robins is a member of the U.S. Army Science Board, and an alumni of the Defense Science Study Group, an advisory panel to the U.S. Department of Defense. He also served on panels of the National Academy of Sciences and the National Science Foundation. He was General Chair of the 1996 ACM/SIGDA Physical Design Workshop, and a co-founder of the 1997 International Symposium on Physical Design. Professor Robins also serves on the technical program committees of several other leading conferences and on the Editorial Board of the IEEE Book Series. He is a member of ACM, IEEE, SIAM, MAA, SIGDA and SIGACT.

Chris S. Helvig received his B.S. with honors in 1996 from the University of North Carolina, Chapel Hill, and his M.S. in 1998 from the Department of Computer Science at the University of Virginia in Charlottesville. He co-authored several papers in the areas of VLSI CAD, computer vision, and computational geometry. He is also interested in computer game development, and he is currently working as a software engineer for Volition, Inc.

Alexander Zelikovsky received the A.B. and M.S. degree in mathematics from Kishinev University, Moldova. In April 1989, he received the Ph.D. degree in computer science from the Institute of Mathematics of the Belorussian Academy of Sciences, Minsk, Belarus. From 1982 to October 1985, he was with the Institute of Mathematics of Moldova Academy of Sciences in Kishinev, where he worked in system programming. He was a Senior Research Scholar with the Institute of Mathematics in Kishinev until September 1995. Dr. Zelikovsky was awarded the Young Investigator award of the Moldova Academy of Sciences and a Humboldt Fellowship (Germany). In 1992-1995, he participated in Volkswagen Stiftung project and was on leave of absence from Institute of Mathematics as Visiting Researcher at the Computer Science Department of Bonn University in Germany, and at Institut fur Informatik in Saarbrueken, Germany. During 1995-97, Dr. Zelikovsky was a Research Scientist at the University of Virginia, Charlottesville, and in 1997-98 he was a Postdoctoral Scholar at University of California, Los Angeles. Since January 1999, he has been an Assistant Professor at the Computer Science Department of Georgia State University, Atlanta. He has authored more than 40 refereed publications. His research interests include VLSI physical layout design and performance analysis, approximation algorithms, combinatorial optimization, and computational geometry.