
“Inform, Experience, Implement” – Teaching an
Intensive High School Summer Course

Ryan Layer, Mark Sherriff, and Luther Tychonievich
Department of Computer Science

University of Virginia
Charlottesville, Virginia 22904

Email: {rl6sf, sherriff, lat7h}@virginia.edu

Abstract—During the summer of 2011, twenty-four high school
students participated in an intense, three-week computer science
course at the University of Virginia. The course met for twenty-
one three-hour sessions, thus encompassing more contact time
than a standard college-level course. The course was structured
in an “Inform, Experience, Implement” active-learning format:
students were exposed to the history of a particular problem in
context and participated in an active learning lesson regarding
the topic before learning how to address the examined problem
through programming. This structure helped integrate into the
course best practices from experiential learning, kinesthetic
outreach activities, and active learning pedagogy. Utilizing this
three-part rotation curriculum achieved some important goals,
including holding the interest of students during the summer for
six hours a day and successfully motivating students who had no
programming background.

I. INTRODUCTION

Diversity continues to be a challenge in many Computer
Science departments [1]–[5]. While work is ongoing in fos-
tering diversity inside existing CS programs, many have noted
that early exposure to computing, such as in middle school
and high school, is essential in eliminating many of the
stereotypes and misconceptions about computer science and
thus helping to improve the numbers of incoming students
into the discipline [6], [7]. However, many middle schools
and high schools lack the resources and personnel needed to
run such programs during the school year. To help fill this
gap, numerous computing summer camps have cropped up
at universities around the United States sponsored by various
companies and organizations.

One of the main difficulties faced by computing summer
camps is in creating a curriculum that can hold students
attention for several hours a day, particularly during a time that
they are accustomed to spending in more leisurely pursuits.
Some summer camps minimize this difficulty by recruiting
students that already have some familiarity and fascination
with computing. While teaching such students in a concen-
trated learning environment is both exciting and rewarding,
not every summer program has students that come in with
that level of familiarity or drive. Indeed, these pre-motivated
students are the ones who least need the early outreach of a
summer camp in order to choose a computing field.

We embarked on creating a curriculum for students without
prior interest in computing during the summer of 2011 at the

University of Virginia. Our camp consisted of 24 fifteen-year
old students from traditionally underrepresented demographic
groups in computer science. All but two of these students had
no programming experience whatsoever and mainly came to
the program out of curiosity. Further, we were to have these
students for six hours a day, separated into two three-hour
blocks, over the course of three weeks. This equated to more
contact hours than a standard three-credit college course.

We faced two main challenges with our summer experience:
1) how to hold a young student’s attention during a traditional
break time; and 2) how to cover enough material to make an
impact without overwhelming the students.

In this paper, we describe the curriculum that we developed
for an intensive summer computer science experience for
high school students with no programming background. Our
goals in this camp were twofold. First, we wanted to treat
the camp as an outreach program, with the goal of building
interest and excitement in the students. Second, we wanted
to provide the students with practical programming skills and
experience they could use in the years that would likely elapse
before their next exposure to computing instruction. Thus, we
decided to include the kinesthetic activities that have been
shown effective in outreach, the student-focused educational
techniques that have been shown effective in internalizing
knowledge, and some degree of direct instruction as the
students would not have the time to investigate course topics
on their own before experiential instruction. We combined
these elements in a curriculum that was based around the
mnemonic of “Inform, Experience, Implement”, where our
instructional style progressed from contextual history lessons,
through active learning experiences, and ending with program-
ing implementation of various solutions. This methodology
allowed us to integrate our various objectives in a direct and
accessible way, both building interest and developing skills in
the students. We found that keeping this mnemonic in mind
through our teaching was an effective method for this age
group and experience level combination.

II. RELATED WORK

In this section, we describe related work in computer science
summer camps and teaching computer science material in the
context of the real world.



A. CS Summer Camps

There have been many studies that indicate computing
summer camp programs can increase the interest of females
and under-represented minorities in computer science (see,
e.g., [8]–[21]) and that have discussed other aspects of summer
camp design (see, e.g., [22]–[29]).

We note that there is a bredth of discussion on summer
camps in educational venues in part because of the many dif-
ferent potential combinations of student age, experience level,
demographics, and affluence, along with the wide varieties in
contact hours with the students. For example, Miller et al.
describe their one-week camp in Colorado as being targeted
specifically for middle school students from low-income fam-
ilies [9]. Meanwhile, Carmichael created a day camp specifi-
cally for girls in the realm of video game development [15].
Camps range from one to several weeks, with students living
on campus and off, and with contact hours ranging from one
to seven per day. Ages range from ten to eighteen, with some
camps specifically for girls, other for boys, and others still
for students that are from underrepresented demographics in
computer science.

Our goal is to add to the growing body of knowledge on how
computer science educators can successfully run a summer
experience for younger students. We feel that our experience is
unique from the others in two distinct ways. First, our number
of contact hours was greater than the other camps that we
examined, totaling more total contact hours than a standard
three-credit college course. We believe that our experiences
with a camp of this scale can help other instructors tailor
their own efforts effectively. Second, our students came from
many different cultures and locations. We had students from
across the country, not just local to Virginia, and all were
from traditionally underrepresented demographics in computer
science. Only two of our students had any programming
experience prior to coming to the camp.

B. Teaching CS in Context

Teaching computer science in the context of computing
problems is something that has been debated in CS education.
The argument for contextualized CS education focuses on the
idea of grabbing the interest of the student and using that hook
to then introduce various computing topics. If the context is
“good enough,” then students are more likely to stick through
a CS course and go on to a second one [30], [31]. The
counter-argument states that students learn computing topics
regarding that one context and that introductory students have
a difficulty abstracting the concepts that they have learned to
be able to apply them to other problems. Further, teaching the
context takes up valuable lesson time, which might be spent
on covering possibly more advanced programming topics that
could have the same luring effect as the problem context [31].

Guzdial argues that if students don’t learn the material in
the first place, then they won’t have the opportunity to transfer
what they learned from one context to another [31]. Thus, if
teaching in context helps students decide to stick with CS
where without such context that would leave the course, then

there is a net gain. The main idea behind this and other
contextualized instruction arguments is that students want to
know why what they are learning is relevant and useful [31],
[32].

The desire to teach computing in context is almost ax-
iomatic in summer camp and enrichment programs, with
camps foccusing on such topics as robotics [11], games [15],
[23], [24], [26], publishing [16], web development [20], [21],
fashion [14], and creativity through computing [10], [29],
[33] to name just a few. We likewise found this desire to
understand relevance manifest with our group of high school
students. With this age group and experience level, we quickly
determined that if we did not provide them with context early
on, attention and interest waned.

We had six hours a day with the students which allowed time
to cover both the context and the programming in reasonable
depth. Our “Inform, Experience, Implement” concept came
specifically from the mentality that we had to sell the students
on the problem first, have them experience the problem
personally, and then learn how to solve the problem through
programming.

Multiple studies have argued that mixing various media
and motivated examples improve student involvement and
learning [33]–[37]. These fit into broader trends in science
education to engage students in the learning process through
various problem-oriented and student-directed learning struc-
tures [38]–[42]. Recent studies have also observed that some
activities that have been shown to engage students are not
well suited to teaching computing at a deeper level [43],
[44], suggesting there may be additional value in mixing
instructional approaches.

The main challenge we faced was in devising a structure that
would allow us to easily integrate teaching the context of prob-
lems, instructing students in core elements of programming,
and utilizing kinesthetic, inquiry-based, and student-directed
learning. We developed the mnemonic “Inform, Experience,
Implement” as a tool to help guide our lesson development,
providing a framework that aided our lesson planning to give
students opportunities to engage through classroom instruc-
tion, learning activities, and programming experience.

III. THE COURSE

In this section, we describe our curriculum and provide an
example lesson that we used during the course.

A. Overview

The goals of the 2011 summer program at the University of
Virginia were to instill excitement in students about computer
science and to provide students with a solid foundation in a
production-level programming language, Python. We selected
the Python programming language because we believed it
balanced accessibility and power. The interactive command
shell allowed students to dive directly into programming
without the added complexities of editors, interpreters, and
environment setup. The students easily moved from typing



short commands in the shell to writing programs in text files
as the commands became too long for comfortable shell use.

Our 2011 class had 24 rising high school sophomores and
juniors from seven states. A large majority of the students
identified themselves as having no or very little programming
experience, a small portion had experience with HTML,
and two students had a working knowledge of at least one
programing language. For three weeks, our students lived in
on-campus dorms, attended classes, went on field trips, and
completed nightly homework assignments. Their typical day
consisted of two three-hour classes and a two-hour study hall
session. In total, students attended 21 three-hour-long classes,
totaling more contact hours to a standard college course. In
addition to class-based instruction and assignments, students
worked in small groups on a final project that they presented
to a representative from our corporate sponsor on the last day
of the program.

B. Staff Composition

The course was taught primarily by one CS faculty member
and two graduate students with significant teaching experience.
Other CS faculty members and grad students were brought in
for either a full three-hour session or a half session to cover
a lesson in their particular research area. By splitting up the
teaching and having several guests speak on their expertise
area, we were able to avoid over-utilizing any particular
instructor and kept the instruction fresh for the students. Guest
instructors framed their lectures however they liked, with
the main instructors of the program arranging the schedule
such that the “Inform, Experience, Implement” rhythm was
continued.

C. Course Content

One of the messages we wanted to convey to the students
is that computing is a broad and enabling field that impacts
every aspect of the modern world. To this end, we touched
on many topics, including cryptography, GPS and mapping,
the Internet, artificial intelligence, game programming, and
scientific computing. Additionally, we had pairs of students
team up to create projects to show off at the end of the course,
and provided time for problem-based learning to accomplish
that goal. A full outline of course topics can be found at
http://stardock.cs.virginia.edu/lead.

We included the “Inform, Experience, Implement” approach
within each topic, but not always in a straightforward se-
quence. For example, in game programming we used ex-
treme programming to repeatedly iterate from experiencing
a functional but incomplete game to discussing how it could
be improved and implementing those improvements. Another
example of adjusting the design is path planning, where we did
some of the implementation in advance and used it to increase
the learning during the subsequent experience activity.

IV. EXAMPLE LESSONS

To better illustrate how our mnemonic of “Inform, Expe-
rience, Implement” informed our course creation, we provide

several example lessons from our camp. A full course sched-
ule and outlines of other lessons may be also be found at
http://stardock.cs.virginia.edu/lead.

A. Cryptography

After a couple basic introductory lessons, we began the
“Inform, Experience, Implement” methodology by teaching
cryptography.

The “Inform” lesson was organized around the history
of cryptography. The first hour introduced the concepts of
encryption and decryption, starting with classic ciphers such
as Caesar, pigpen, and Vigenére. Students worked in teams to
encode and decode simple messages provided by the instructor.
In the second hour, the instructor described how modern
computing has cracked classic ciphers through brute force,
frequency analysis, and other similar techniques. Students then
learned how cryptography has evolved, looking at modern
schemes such as RSA. The third hour the students developed
their own encryption schemes. Each pair of students was given
a standard deck of playing cards. The pairs had to come up
with their own encryption methodology, write down a detailed
algorithm of how their scheme worked, and then encode their
deck of cards to send a message to another pair. Thus, the
“Inform” activity in this case actually ended with teaching a
lesson about how to write basic algorithms for others to follow.

The “Experience” lesson began during the next morning’s
three-hour block. As the students had not yet seen most of
the campus, a scavenger hunt was arranged for them to find
various clues around the grounds. However, each clue was
encrypted with a different scheme, some from the day before
and some that they had not yet seen. This lesson both gave
the students a well-needed active exercise to get their mind
focused for the afternoon and emphasized examining and
applying new algorithms in a repeated fashion.

During the afternoon’s “Implement” block, students were
asked about the encryption schemes they used. Several stu-
dents noted that doing Caesar cipher shifts by hand was tedious
and that they wished there was a way to automate the process.
Similar sentiments were expressed with the other ciphers as
well. This desire motivated our introduction of the concepts
of strings and loops as we showed the students how to write
programs that could encrypt and decrypt these cyphers more
rapidly and more reliably than the students could do by hand.

B. GPS and Maps

Another good example of our curriculum pattern is a lesson
set on GPS. The “Inform” lesson began with a history of
celestial navigation using a sextant and worked up through
modern GPS technology. Particular attention was paid to the
impact software has had on navigation, including algorithms to
deal with errors such as skew and jitter. Students also learned
about the great circle distance formula used to find the shortest
distance between two points on the surface of a sphere, and
calculated several distances by hand.

For the “Experience” lesson, students used Andriod-
powered smart phones to map buildings on grounds. Each

http://stardock.cs.virginia.edu/lead


smart phone ran a simple custom application that continuously
displayed the current GPS coordinates, had a button to add the
current coordinates to a list, and another button to email the
coordinate list to the user once the activity was completed.
Students were divided into teams, and each team was given a
list of buildings to map. While the list of buildings each group
of students mapped were unique, each building was mapped
by at least two groups. This organization allowed the full set
of points to be combined into a larger map, and the duplicate
points demonstrated issues with GPS coordinate gathering.

In the “Implement” lesson students learned to read data from
a file, graph points, and implement custom functions. Prior
to this point in the class, each values had been either hard-
coded or read from the keyboard. The long list of coordinates,
where each coordinate consisted of many characters, motivated
the need for file input. Once the coordinates were read from
the files, students learned to graph points on the screen and
connect points to form shapes. The class combined coordinates
from all groups to form a rough map of grounds. Finally
the class wrote a function that implemented the great circle
distance formula. Later on in the camp, students also used
these coordinates when learning about optimal paths as we
had them act out the traveling salesman problem by delivering
“packages” to buildings on campus.

V. DISCUSSION

As an instructional staff, we took several lessons from this
experience.

A. Classroom Management

We found managing class time was challenging. A typical
day in our course consisted of two three-hour sessions with
an hour lunch break between sessions. In our experience,
few students enjoy sitting through courses lasting more than
an hour, and college instructors typically lack experience
managing three-hour class periods. A partial solution was to
split each three-hour session into two sessions separated by
a short break. However, we found it difficult to make breaks
long enough for the students to relax and take care of personal
business while still short enough that the students didn’t lose
focus and initiate lengthy social activities. The most effective
counter to this problem was having lessons that were more
active and open (“Experience” lessons), which helped the
students to feel that they were not trapped in the lab.

PowerPoint slides were not an effective teaching tool for
this type of course. We first tried having slides that contained
both definitions of various Python concepts and annotated
examples of Python code for the students to type in and
experience. While the students fully participated in typing
in the code, there was a clear disconnect between the slides
and the programs. Many students focused on entering the list
of commands, not on understanding the commands and the
relationship between commands and results.

Because of this disconnect, we switched to executing the
commands along with the students. This switch gave us more
flexibility to demonstrate the dynamics of each command and

made it easier to field questions from the students. After the
switch from slides to the command environment, we polled the
class about the two styles, and the students overwhelmingly
preferred the command environment.

One drawback of using the command environment instead
of slides is the inability to annotate commands. Without
annotations, all our explanations were verbal and students
who were learning at a slightly different pace sometimes
missed our explanations. While it may be possible to use both
environments, we found that switching between slides and the
command environment was cumbersome and disruptive.

B. Student Participation

The rotation between “Inform” lessons, “Experience”
lessons, and “Implement” lessons had several positive ef-
fects. First, the students stayed engaged during the three-
hours lessons. Putting problems in context and making the
assignments meaningful did have a significant effect on the
group. Knowing that an active learning session was coming
up seemed to keep them more attentive during the lecture and
lab sessions. By the time we got to an “Implement” session,
students were eager to try out their own ideas on how to solve
certain problems.

The students reported that game programming was their
favorite topic. For their final projects, all but two of the
teams created some form of game. Students indicated that
the interactive nature of their projects played a large role
in why it was interesting to them. Other interesting projects
included a networked, chat-enabled version of Tic-Tac-Toe,
a quiz application, and an interactive music creation system.
The final project teams each gave a formal presentation of
their projects to the camp’s corporate sponsor on the last day
of the program.

C. Results

The results of our camp experience can be evaluated from at
least two perspectives. As instructors, we found that “Inform,
Experience, Implement” greatly streamlined the process of
creating lesson plans that incorporated kinesthetic activities,
problem-based inquiry learning, topical instruction, and prac-
tical hands-on experience in many topics within computer
science. Recalling the mnemonic allowed us to easily check
if a particular lesson plan was likely to include each of these
research-backed pedagogical and outreach elements.

The students also seemed to benefit from the course. Three
months after the program completed, we sent informal surveys
to the students asking about their experience. Results indicate
we achieved our goals of motivating students to explore
computer science and providing a foundation for further study.
Selected results from the survey are below.

1) We asked students how comfortable there were with
computer programming. On a scale from one (not com-
fortable at all) to seven (very comfortable), half of the
respondents rated themselves as a three or less before
the program; 75% of students rated themselves as a six
or higher after the camp.



2) We asked students to rate how enthusiastic they felt
about computing. On a scale from one (not enthusiastic
at all) to seven (extremely enthusiastic), half of the
respondents rated themselves as a four or less before the
program, all picked at least a five and 63% of students
chose seven after the camp.

3) We asked students if they are more likely to pursue
computing in college or a career after the camp. On
a scale from one (No!) to seven (Yes!), 88% of the
students rate five or higher.

In addition to these statistics, each individual student rated
themselves as more comfortable with and more enthusiastic
about programming after the camp than they were before.

VI. USE IN COLLEGE COURSES

After the success of the first instance of our course, we
looked to find ways to incorporate our methodology into
standard college classes. As one of the authors is the primary
instructor for Introduction to Programming at the University
of Virginia, we felt it best to pilot some of our lessons in this
course. Introduction to Programming is a required course for
all engineering students at the University of Virginia and is
also taken by a large number of students from the College of
Arts and Sciences. In a given year, over 1000 students take
some version of our introductory course, with around 750
taking this particular version. We felt that this class would
be a good fit for the technique due to its diverse population
of student backgrounds and interests and the natural fit the
methodology would have with a close lab format.

“Inform, Experience, Implement” lessons were conducted
on encryption, GPS, and Python programming. For the most
part, the lessons were well received. Many students anec-
dotally reported that they enjoyed doing things outside of
the traditional classroom lecture format, particularly when the
classroom has nearly 300 students in it. However, there was a
vocal minority that disliked being asked to do something that
required them to leave the classroom. Student performance
on test questions on this material was, on average, similar to
other question score distributions. However, as these topics had
not been introduced into this class in any other fashion, we
cannot draw any conclusions as to whether the technique itself
improved learning. We plan to revamp existing course material
to reflect the “Inform, Experience, Implement” methodology
to make a better comparison in our future work.

VII. FUTURE WORK

As discussed in the previous section, we are branching out
to utilize the “Inform, Experience, Implement” methodology
in other courses and formats. Besides using the methodology
in introductory college courses, we will use the methodology
again in the summer of 2012 with the next iteration of our
LEAD summer camp. This summer, however, we will be
running two one-week courses, thus substantially changing
the amount of time we have with the students. Further, our
age group is dropping by a grade level, to rising ninth grade
students. Our goal this summer is to evaluate the efficacy of

the methodology when compressed into a tighter schedule.
We plan to continue to do lessons on encryption, GPS, and
Python, while introducing a new topic on robotics using Lego
Mindstorm NXT kits.

Early results from the 2012 summer course are generally
positive, with student-reported comfort with computing in-
creasing from 2.7 to 5.0 on a scale of 1 to 7, with 7 being
most comfortable. We plan to present more complete results
from the 2012 camps in the future.

VIII. CONCLUSION

During the summer of 2011, twenty-four high school stu-
dents participated in an intense, three-week computer sci-
ence course at the University of Virginia. The course itself
encompassed more contact hours than the standard college-
level course. Due to the amount of time that students spent
in class (six hours a day split into two three-hour sessions),
we looked for novel ways to keep students’ interest and
enthusiasm high. We found that teaching CS in context for
this specific demographic and experience level was highly
effective. The course was structured in an “Inform, Experience,
Implement” active-learning format: students were informed
about the history and importance of a particular problem in
context, experienced the problem in an active learning lesson,
and then implemented a program that could help to solve
the problem. We feel that this three-part rotation curriculum
achieved many of our goals, including instilling in students an
excitement about computing and also teaching them the basics
of a general-purpose programming language.

IX. ACKNOWLEDGEMENTS

We would like to thank Google for their generous support
for the LEAD summer program. We would also like to thank
Carolyn Vallas, Assistant Dean for Diversity, in the School of
Engineering and Applied Science at the University of Virginia
for facilitating the summer experience.

REFERENCES

[1] J. M. Cohoon, “Toward improving female retention in the computer
science major,” Commun. ACM, vol. 44, pp. 108–114, May 2001.

[2] Richard Tapia Celebration of Diversity in Computing, ACM. ACM,
2003–2011.

[3] J. P. Cohoon, “An introductory course format for promoting diversity
and retention,” in Proceedings of the 38th SIGCSE technical symposium
on Computer science education, ser. SIGCSE ’07. New York, NY,
USA: ACM, 2007, pp. 395–399.

[4] S. Fancsali and L. McGinnis, “Untapped resources: can intellectual
diversity promote cultural diversity in technology?” in Proceedings of
the 2005 conference on Diversity in computing, ser. TAPIA ’05. New
York, NY, USA: ACM, 2005, pp. 51–52.

[5] A. Woszczynski, C. Beise, M. Myers, and J. Moody, “Diversity and
the information technology workforce: an examination of student per-
ceptions,” in Proceedings of the 2003 SIGMIS conference on Computer
personnel research: Freedom in Philadelphia–leveraging differences and
diversity in the IT workforce, ser. SIGMIS CPR ’03. New York, NY,
USA: ACM, 2003, pp. 117–122.

[6] J. M. Cohoon, “Toward improving female retention in the computer
science major,” Commun. ACM, vol. 44, pp. 108–114, May 2001.

[7] L. Carter, “Why students with an apparent aptitude for computer science
don’t choose to major in computer science,” in SIGCSE Technical
Symposium on Computer Science Education, 2006, pp. 27–31.



[8] C. Wigal, N. Alp, C. McCullough, S. Smullen, and K. Winters, “ACES:
introducing girls to and building interest in engineering and computer
science careers,” in 32nd Annual Frontiers in Education Conference (FIE
2002), vol. 2, nov. 2002, pp. F1C–8 – F1C–13.

[9] L. Miller, S. Shearer, and B. Moskal, “Technology camp 101: Stimu-
lating middle school students’ interests in computing,” in 35th Annual
Frontiers in Education Conference (FIE 2005), oct. 2005, p. S1F.

[10] J. C. Adams, “Alice, middle schoolers & the imaginary worlds camps,”
SIGCSE Bull., vol. 39, pp. 307–311, March 2007.

[11] K. R. Cannon, K. A. Panciera, and N. P. Papanikolopoulos, “Second
annual robotics summer camp for underrepresented students,” SIGCSE
Bull., vol. 39, pp. 14–18, June 2007.

[12] P. Doerschuk, J. Liu, and J. Mann, “Pilot summer camps in computing
for middle school girls: from organization through assessment,” SIGCSE
Bull., vol. 39, pp. 4–8, June 2007.

[13] Y. Ouyang and K. Hayden, “A technology infused science summer camp
to prepare student leaders in 8th grade classrooms,” in Proceedings of
the 41st ACM technical symposium on Computer science education, ser.
SIGCSE ’10. New York, NY, USA: ACM, 2010, pp. 229–233.

[14] W. W. Lau, G. Ngai, S. C. Chan, and J. C. Cheung, “Learning
programming through fashion and design: a pilot summer course in
wearable computing for middle school students,” SIGCSE Bull., vol. 41,
pp. 504–508, March 2009.

[15] G. Carmichael, “Girls, computer science, and games,” SIGCSE Bull.,
vol. 40, pp. 107–110, November 2008.

[16] U. Wolz, M. Stone, S. M. Pulimood, and K. Pearson, “Computational
thinking via interactive journalism in middle school,” in Proceedings of
the 41st ACM technical symposium on Computer science education, ser.
SIGCSE ’10. New York, NY, USA: ACM, 2010, pp. 239–243.

[17] D. P. Groth, H. H. Hu, B. Lauer, and H. Lee, “Improving computer
science diversity through summer camps,” SIGCSE Bull., vol. 40, pp.
180–181, March 2008.

[18] I. Pivkina, E. Pontelli, R. Jensen, and J. Haebe, “Young women in
computing: lessons learned from an educational & outreach program,”
SIGCSE Bull., vol. 41, pp. 509–513, March 2009.

[19] S. Graham and C. Latulipe, “Cs girls rock: sparking interest in computer
science and debunking the stereotypes,” SIGCSE Bull., vol. 35, pp. 322–
326, January 2003.

[20] M. B. Rosson, A. Ioujanina, T. Paone, G. Sheasley, H. Sinha, C. Ganoe,
J. M. Carroll, and J. Mahar, “A scaffolded introduction to dynamic
website development for female high school students,” SIGCSE Bull.,
vol. 41, pp. 226–230, March 2009.

[21] L. Pollock, K. McCoy, S. Carberry, N. Hundigopal, and X. You,
“Increasing high school girls’ self confidence and awareness of cs
through a positive summer experience,” SIGCSE Bull., vol. 36, pp. 185–
189, March 2004.

[22] J. Gregg, C. McDonnell, and T. Chen, “Work in progress - PEER college
summer camp,” in 35th Annual Frontiers in Education Conference (FIE
2005), oct. 2005, p. S1F.

[23] B. Maxim, W. Grosky, and J. Baugh, “Work in progress - introducing
information technology through game design,” in 37th Annual Frontiers
In Education Conference (FIE 2007), oct. 2007, pp. T1B–1 –T1B–2.

[24] A. Denault, J. Kienzle, and J. Vybihal, “Be a computer scientist for
a week the mcgill “game programming guru” summer camp,” in 38th
Annual Frontiers in Education Conference(FIE 2008), oct. 2008, pp.
T3D–1 –T3D–6.

[25] B. Maxim and B. Elenbogen, “Work in progress - attracting k-12
students to study computing,” in 38th Annual Frontiers in Education
Conference (FIE 2008), oct. 2008, pp. F2H–15 –F2H–16.

[26] M. Al-Bow, D. Austin, J. Edgington, R. Fajardo, J. Fishburn, C. Lara,
S. Leutenegger, and S. Meyer, “Using game creation for teaching
computer programming to high school students and teachers,” SIGCSE
Bull., vol. 41, pp. 104–108, July 2009.

[27] S. H. Rodger, J. Hayes, G. Lezin, H. Qin, D. Nelson, R. Tucker,
M. Lopez, S. Cooper, W. Dann, and D. Slater, “Engaging middle school
teachers and students with alice in a diverse set of subjects,” SIGCSE
Bull., vol. 41, pp. 271–275, March 2009.

[28] P. A. G. Sivilotti and M. Demirbas, “Introducing middle school girls to
fault tolerant computing,” in Proceedings of the 34th SIGCSE technical
symposium on Computer science education, ser. SIGCSE ’03. New
York, NY, USA: ACM, 2003, pp. 327–331.

[29] J. C. Adams, “Scratching middle schoolers’ creative itch,” in Pro-
ceedings of the 41st ACM technical symposium on Computer science

education, ser. SIGCSE ’10. New York, NY, USA: ACM, 2010, pp.
356–360.

[30] S. Cooper and S. Cunningham, “Teaching computer science in context,”
ACM Inroads, vol. 1, pp. 5–8, March 2010.

[31] M. Guzdial, “Does contextualized computing education help?” ACM
Inroads, vol. 1, pp. 4–6, December 2010.

[32] L. Layman, L. Williams, and K. Slaten, “Note to self: make assignments
meaningful,” in Proceedings of the 38th SIGCSE technical symposium
on Computer science education, ser. SIGCSE ’07. New York, NY,
USA: ACM, 2007, pp. 459–463.

[33] M. Guzdial and A. E. Tew, “Imagineering inauthentic legitimate pe-
ripheral participation: an instructional design approach for motivating
computing education,” in Proceedings of the second international work-
shop on Computing education research, ser. ICER ’06. New York, NY,
USA: ACM, 2006, pp. 51–58.

[34] P. Curzon, P. W. McOwan, Q. I. Cutts, and T. Bell, “Enthusing &
inspiring with reusable kinaesthetic activities,” in Proceedings of the
14th annual ACM SIGCSE conference on Innovation and technology in
computer science education, ser. ITiCSE ’09. New York, NY, USA:
ACM, 2009, pp. 94–98.

[35] R. Moreno and R. E. Mayer, “Cognitive principles of multimedia
learning: The role of modality and contiguity,” Journal of Educational
Psychology, vol. 91, no. 2, pp. 358–368, June 1999.

[36] F. Coffield, D. Moseley, E. Hall, and K. Ecclestone, Learning styles and
pedagogy in post-16 learning. A systematic and critical review. London,
UK: Learning and Skills Research Centre, 2004.

[37] J. J. McConnell, “Active learning and its use in computer science,”
in Proceedings of the 1st conference on Integrating technology into
computer science education, ser. ITiCSE ’96. New York, NY, USA:
ACM, 1996, pp. 52–54.

[38] J. J. Farrell, R. S. Moog, , and J. N. Spencer, “A guided inquiry general
chemistry course,” Journal of Chemistry Education, vol. 76, pp. 570–
574, 1999.

[39] K. D. A. and R. Fry, Toward an applied theory of experiential learning.
London: John Wiley, 1975.

[40] A. Chickering and Z. Gamson, “Seven principles for good practice in
undergraduate education,” AAHE Bulletin, no. 39, pp. 3–7, 1987.

[41] M. Martyn, “Clickers in the classroom: An active learning approach,”
EDUCAUSE Quarterly (EQ), vol. 30, no. 2, pp. 71–74, 2007.

[42] E. Douglas and C.-C. Chiu, “Work in progress - use of guided inquiry as
an active learning technique in engineering,” in Frontiers in Education
Conference, 2009. FIE ’09. 39th IEEE, oct. 2009, pp. 1 –2.

[43] Y. Feaster, L. Segars, S. K. Wahba, and J. O. Hallstrom, “Teaching cs
unplugged in the high school (with limited success),” in Proceedings
of the 16th annual joint conference on Innovation and technology in
computer science education, ser. ITiCSE ’11. New York, NY, USA:
ACM, 2011, pp. 248–252.

[44] R. Thies and J. Vahrenhold, “Reflections on outreach programs in cs
classes: learning objectives for “unplugged” activities,” in Proceedings
of the 43rd ACM technical symposium on Computer Science Education,
ser. SIGCSE ’12. New York, NY, USA: ACM, 2012, pp. 487–492.


	Introduction
	Related Work
	CS Summer Camps
	Teaching CS in Context

	The Course
	Overview
	Staff Composition
	Course Content

	Example Lessons
	Cryptography
	GPS and Maps

	Discussion
	Classroom Management
	Student Participation
	Results

	Use in College Courses
	Future Work
	Conclusion
	Acknowledgements
	References

