
Utilizing Verification and Validation Certificates to
Estimate Software Defect Density

Mark Sherriff
North Carolina State University

Raleigh, NC, USA 27695
+1-919-513-5082

mark.sherriff@ncsu.edu

ABSTRACT
In industry, information on defect density of a product tends to
become available too late in the software development process to
affordably guide corrective actions. An important step towards
remediation of the problem associated with this late information
lies in the ability to provide an early estimation of defect density.
Our research objective is to build a parametric model which
utilizes a persistent record of the validation and verification
(V&V) practices used with a program to estimate the defect
density of that program. The persistent record of the V&V
practices are recorded as certificates which are automatically
recorded and maintained with the code.

PhD Advisor: Dr. Laurie Williams, williams@csc.ncsu.edu

Categories and Subject Descriptors
D.2.8 [Software Engineering]: Metrics - Performance measures,
Process metrics, Product metrics.

General Terms
Measurement, Design, Reliability

Keywords
Software Reliability Engineering, Reliability Estimation,
Validation and Verification Management

1. INTRODUCTION
In industry, post-release defect density of a software system
cannot be measured until the system has been put into production
and has been used extensively by end users. The defect density of
a software system is calculated by measuring the number of
failures divided by the size of the system, using a size measure
such as lines of code. Actual post-release defect density
information becomes available too late in the software lifecycle to
affordably guide corrective actions to software quality.
Correcting software defects is significantly more expensive when
the defects are discovered by an end user compared with earlier in
the development process [4].

Because of this increasing cost of correcting defects, software
developers can benefit from early estimates of the defect density
of their product. If developers can be presented with this defect
density information during the development process in the
environment where they are creating the system, more affordable
corrective action can be taken to rectify defect density concerns as
they appear.

A development team will use several different methods to ensure
that a system is of high-assurance [14]. However, the verification
and validation (V&V) practices used to make a system reliable
might not always be documented or this documentation may not
be maintained. This lack of documentation can hinder other

developers from knowing what V&V practices have been
performed on a given section of code. Further, if code is being
reused from an earlier project or code base, developers might
spend extra time re-verifying a section of code that has already
been verified thoroughly.

Research has shown that parametric models [6] using software
metrics, such as the Software Testing and Reliability Early
Warning (STREW) [10] suite, can be an effective means to
predict product quality. Our research objective is to build a
parametric model which utilizes a persistent record of the V&V
practices used with a program to estimate the defect density of
that program. To accomplish this objective, we are developing a
method called Defect Estimation with V&V Certificates on
Programming (DevCOP). This method includes a mechanism for
creating a persistent record of V&V practices as certificates stored
with the code base, a parametric model to provide an estimate of
defect density, and tool support to make this method accessible
for developers. A DevCOP certificate is used to track and
maintain the relationship between code and the evidence of the
V&V technique used. We will build the parametric model using a
nine-step systematic methodology for building software
engineering parametric models [2], which has been used to build
other successful parametric models [3, 10, 12].

2. BACKGROUND
In this section, we will discuss the relevant background work and
methodologies used during our research. It includes descriptions
of research regarding other metric-based defect density
estimation, V&V techniques, and parametric modeling in software
engineering.

2.1 Parametric Modeling
Parametric models relate dependent variables to one or more
independent variables based on statistical relationships to provide
an estimate of the dependent variable with regards to previous
data [6]. The general purpose of creating a parametric model in
software engineering is to help provide an estimated answer to a
software development question early in the process so that
development efforts can be directed accordingly. The software
development question could relate to what the costs are in creating
a piece of software, how reliable a system will be, or any number
of other topics.

Parametric modeling has been recognized by industry and
government as an effective means to provide an estimate for
project cost and software reliability. The Department of Defense,
along with the International Society of Parametric Analysts,
acknowledges the benefit of using parametric analysis, and
encourages their use when creating proposals for the government
[6]. The Department of Defense claims that parametric modeling
has reduced government costs and also improved proposal

evaluation time [6]. Boehm developed the Constructive Cost
Model (COCOMO) [3] to estimate project cost, resources, and
schedule. Further, the Constructive Quality Model
(COQUALMO) added defect introduction and defect removal
parameters to the COCOMO to help predict potential defect
density in a system. Nagappan [10] created a parametric model
with his Software Testing Reliability Early Warning (STREW)
metric suite to create an estimate of failure density based on a set
of software testing metrics. In our research, we will also build a
parametric model to estimate defect density based upon V&V
certificates recorded with the code.

2.2 Verification and Validation Techniques
During the creation of software, a development team can employ
various V&V practices to improve the quality of the software [1].
For example, different forms of software testing could be used to
validate and verify various parts of a system under development.
Sections of code can be written such that they can be
automatically proven correct via an external theorem prover [14].
A section of a program that can be logically or mathematically
proven correct could be considered more reliable than a section
that has “just” been tested for correctness.

Other V&V practices and techniques require more manual
intervention and facilitation. For instance, formal code
inspections [5] are often used by development teams to evaluate,
review, and confirm that a section of code has been written
properly and works correctly. Pair programmers [15] benefit from
having another person review the code as it is written. Some code
might also be based on technical documentation or algorithms that
have been previously published, such as white papers, algorithms,
or departmental technical reports. These manual practices, while
they might not be as reliable as more automatic practices due to
the higher likelihood of human error, still provide valuable input
on the reliability of a system.

The extent of V&V practices used in a development effort can
provide information about the estimated defect density of the
software prior to product release. The Programatica team at the
Oregon Graduate Institute at the Oregon Health and Science
University (OGI/OHSU) is working on a method for high-
assurance software development [14]. Programmers can create
different types of certificates on sections of code based on the
V&V technique used by the development on that section of the
code. Certificates are used to track and maintain the relationship
between code and the evidence of the V&V technique used.
Currently, the three types of V&V techniques that Programatica
can create certificates for include expert opinion, unit testing, and
formal proof. These certificates are used as evidence that V&V
techniques were used to make a high-assurance system [14]. We
propose an extension of OGI/OHSU’s certificates for defect
density estimation whereby the estimate is based upon the
effectiveness of the V&V practice (or lack thereof) used in code
modules.

2.3 Metrics to Predict Defect Density
Operational profiles have been shown to be effective tools to
guide testing and help ensure that a system is reliable [8]. An
operational profile is “the set of operations [available in a system]
and their probabilities of occurrence” as used by a customer in the
normal use of the system [9]. However, operational profiles are
perceived to add overhead to the software development process as
the development team must define and maintain the set of
operations and their probabilities of occurrence. Rivers and Vouk
recognized that operational profile testing is not always performed

when modern constraints on market and cost-driven constraints
are introduced [11]. They performed research on evaluating non-
operational testing and found that there is a positive correlation
between field quality and testing efficiency. Testing efficiency
describes the potential for a given test case to find faults at a given
point during testing.
Nagappan [10] performed research on estimating failure density
without operational profiles by calibrating a parametric model
which uses in-process, static unit test metrics. This estimation
provides early feedback to developers so that they can increase the
testing effort, if necessary, to provide added confidence in the
software. The STREW metric suite consists of static measures of
the automated unit test suite and of some structural aspects of the
implementation code. A two-phase structured experiment was
carried out on 22 projects from junior/senior-level software
engineering students from the fall of 2003 [10], which helped to
refine the STREW-J metric suite. The refined suite was then used
27 open source Java projects found on SourceForge1, an open-
source development website, and five projects from a company in
the United States [10]. The research from these case studies
indicates that the STREW-J metrics can provide a means for
estimating software reliability when testing reveals no failures.
Another version of the STREW metric suite was developed
specifically for the Haskell programming language, STREW-H.
STREW-H was similarly built and verified using case studies
from open-source and industry. An open-source case study [13]
provided guidance to refine the metric suite for its use on an
industry project with Galois Connections, Inc [12]. These
findings also showed that in-process metrics can be used as an
early indicator of software defect density for Haskell programs.

3. PROPOSED SOLUTION
We propose a non-operational parametric model to estimate defect
density based upon records of which V&V practices were
performed on sections of code. We also wish to integrate our
estimation directly into the development cycle so that corrective
action to reduce defect density can take place early in the
development process. We call this method the Defect Estimation
from V&V Certification on Programming (DevCOP) method. A
V&V certificate contains information on the V&V technique that
was used to establish the certificate. Different V&V techniques
will provide a different level of assurance as to how reliable a
section of code is. For example, a desk check of code would be,
in general, less effective than a formal proof of the same code.

We envision the defect density parametric model to take the form
of Equation 1. For each certificate type, we would sum the
product of a size measure (perhaps lines of code or number of
functions/methods) and a coefficient produced via regression
analysis of historical data. The calibration step of the regression
analysis would yield the constant factor (a) and a coefficient
weighting (cj) for each certificate type, indicating the importance
of a given V&V technique to an organization’s development
process.

)*(
_

1
∑
=

+=
typeecertificat

j
jj SizecaDensityDefect (1)

To build and verify our parametric model of our DevCOP method,
we are utilizing the nine-step modeling methodology developed

1 http://www.sf.net/

by the Center for Software Engineering at the University of
Southern California [2]:

1. Determine model needs;
2. Analyze existing literature;
3. Perform behavioral analysis;
4. Define relative significance;
5. Gather expert opinion;
6. Formulate a priori model;
7. Gather and analyze project data;
8. Calibrate a posteriori model; and
9. Gather more data; refine model.

The goal of the model is to provide an estimate of defect density
based on V&V certificates and the coefficient weights. We
anticipate that a model would need to be developed for each
programming language we would study. Our current work
involves the Java (object-oriented) and Haskell (functional)
languages.

The second step is to analyze existing literature to determine
categories of V&V techniques and empirical findings on the
defect removal efficacy of each V&V practice. Balci categorized
V&V techniques with some regard to their general effectiveness
as to finding defects in a system [1]. For the purposes of our
scale, we began with Balci’s categorization of the V&V
techniques:

• Manual – includes all manual checking, such as pair
programming [15] and code inspections [5];

• Static – includes automatic checking of code before run-
time, such as syntax and static analysis;

• Dynamic – includes all automatic checking that takes
place during execution, such as all forms of black-box
testing;

• Symbolic – includes all model-based checking, such as
path analysis;

• Constraint – includes all defined assertions and constraints
programmed into the code base [14];

• Formal – includes all strictly mathematical forms of
checking, such as lambda calculus and formal proofs [14].

Assigning proper relative significance to certificates to place them
on a single scale of relative effectiveness is a significant challenge
in our research. Each of these V&V categories provides different
evidence as to how reliable a system is [1]. For example, static
V&V techniques can provide information as to whether the
structure of the code is correct, while manual V&V techniques
can provide information about both the structure of the code and if
the code is providing the functionality requested by the
customer(s). We will perform a causal analysis with our industry
partners on our initial data to help build our V&V rubric. The
causal analysis will provide us with more information about the
efficacy of certain V&V techniques under particular
circumstances.
We must also determine the proper granularity for the model.
Code certificates could potentially be associated with modules,
classes, functions, or individual lines of code. Each level of
granularity offers potentially different information about the
defect density of the system, and also different challenges in
gathering data. Currently, we are analyzing certificates at the
function level and are involved in on-going analysis with our
industry partners on this decision.

We are working with industry partners to gather expert opinion
and our initial data sets. Developers on a small Java team using
Eclipse are recording their V&V efforts using the DevCOP plug-
in (described in Section 6) as the project progresses. During
defect removal and bug fixes, the team will also record these
efforts as a different type of certificate. Proceeding through steps
6-9 of the parametric modeling methodology will require a
significant number of projects for each language we work with.

4. LIMITATIONS
In the creation of certificates, we are not assigning more
importance to certain functions or sections of code over others, as
is done with operational profile means of estimation. Nor are we
using the severity of defects detected to affect the importance of
some certificates over another. While this level of granularity
could be beneficial, one of our initial goal’s is to make this
method easy to use during development, and at this time, we think
that adding this level of information could be a hindrance.
Another granularity limitation is the granularity of certificates.
Based on the Programatica Team’s work and expert opinion, it
was decided that methods would be the proper level of granularity
for certificates. As previously discussed, we recognize that being
able to record certificates and a line of code level could be
beneficial, but at this time method-level recording seemed to be
the best course of action for the initial validation of the
methodology.

5. TOOL SUPPORT
We will automate the DevCOP method with little additional
overhead for developers. Ease of use, along with the added benefit
of being able to calculate V&V and defect information with a
defect density estimate, should make the DevCOP method
practical for practicing engineers. We have created the first
version of an DevCOP Eclipse2 plug-in to handle the creation and
management of V&V certificates during the development
process3[13]. The plug-in allows developers to create certificates
during the development process within the integrated
development environment (IDE) so that this information can be
utilized throughout the code’s lifetime. Figure 1 shows a
screenshot of the Eclipse plug-in for recording V&V certificates.

Figure 1. Screenshot of the DevCOP Eclipse plug-in for

recording V&V certificates.

In the current version of the plug in, programmers can select one
or more functions for certification through the Eclipse Package

2 For more information, go to http://www.eclipse.org/.
3 The plug-in is available at http://arches.csc.ncsu.edu/sherriff/devcop/.

Explorer. They assign the type of certificate (i.e. Code Inspection,
Pair Programming, Bug Fix) and the weight coefficient associated
with it. The certificate information is then stored in an XML
document that is saved in the project’s workspace. The Eclipse
plug-in reads and writes to this XML document as certificates are
created and edited.

We have made the certificate creation process as easy and
transparent as possible, and will continue to improve it in later
iterations as we receive more developer feedback. For example, if
two programmers were about to start pair programming on a piece
of code, it would be beneficial if they could press a single button
and the Eclipse plug-in would then mark all code until the button
is pressed again as having a pair programming certificate.
Enhancements such as this are currently under development.

6. CONCLUSIONS AND FUTURE WORK
We have created and are validating a method for managing and
leveraging the effort put into V&V by a development team to
provide an estimate of software defect density in-process. Due to
the high costs of fixing software defects once a product has
reached the field, any information that can be provided to
developers in-process and can give an indication of software
defect density is invaluable. If corrective actions can be taken
earlier in the software development life cycle to isolate and repair
software defects, overall maintenance costs can decrease.

The DevCOP method that we are proposing will help with this
problem in several ways. First, after a set of certificates has been
created, an overall estimate of defect density can be created based
on the V&V weightings using a parametric model. Research has
shown that parametric models using software metrics can be an
effective method for predicting defect density [10]. We are
gathering data from numerous industrial programs to calibrate our
method to the general case.

DevCOP also allows developers to manage the effort that is put
into V&V in a place where all developers can see what measures
have been taken to ensure a piece of code is reliable and to treat it
accordingly. The DevCOP method assists developers in
identifying and analyzing sections of code that have not yet been
certified, or to concentrate their efforts on a particularly critical
section of code.

In addition to providing a defect density estimate, DevCOP
information can be used to provide a V&V history for particular
code segments. Development teams can see what efforts were
used to verify the code, even if a different team was working on
the system or if poor documentation was available. If the code is
found to be error-prone, the certificate information can provide
guidance as to what techniques might need to be improved in the
organization. During system maintenance, certificates can be
referenced to see what types of V&V techniques were performed
on a given section of code. If the code is found to be trustworthy,
the certificate information with this code could provide evidence
that this code is reliable for reuse in future systems.

Another potential use for this V&V information is to build the
certificates into the compiled program itself, allowing it to be
referenced at runtime by other systems. One possible way of
including certificate information with a system is to instrument
the code with the certificates, thus storing this V&V effort in a
manner that can be reference at runtime. This stored certificate
information could prove to be useful information for numerous
types of systems, from trust management for personal computers
to systems that require load balancing or job distribution.

Systems that have information that shows that effort was put in to
make the system reliable could receive a greater share of
distributed jobs. This potential use of DevCOP is similar to that
of security certificates over the Internet [7], which show that
effort has been put forth to ensure that the connection or website
is secure. The V&V information could also be made available at
the time that the system is delivered, to help show the customer
that the proper techniques were used to ensure the quality of the
product.

7. REFERENCES
[1] Balci, O., "Verification, Validation, and Accreditation of

Simulation Models," Winter Simulation Conference, 1997,
pp. 125-141.

[2] Boehm, B. W., "Building Parametric Models," International
Advanced School of Empirical Software Engineering, Rome,
Italy, September 29, 2003.

[3] Boehm, B. W., Horowitz, E., Madachy, R., Reifer, D., Clark,
B., Steece, B., Brown, A. W., Chulani, S., and Abts, C.,
Software Cost Estimation with COCOMO II. Upper Saddle
River, NJ: Prentice Hall, 2000.

[4] Dolbec, J. and Shepard, T., "A Component Based Software
Reliability Model," Conference of the Centre for Advanced
Studies on C, 1995.

[5] Fagan, M., "Design & Code Inspections to Reduce Errors in
Program Development," IBM Systems Journal, vol. 15, no. 3,
pp. 182-211, 1979.

[6] International Society of Parametric Analysts, "Parametric
Estimating Handbook." Available Online. Online
Handbook. http://www.ispa-
cost.org/PEIWeb/Third_edition/newbook.htm.

[7] Kent, S., "Evaluating certification authority security," IEEE
Aerospace Conference, Aspen, CO, March 21-28, 1998, pp.
319-327.

[8] Musa, J., "Theory of Software Reliability and its
Applications," IEEE Transactions on Software Engineering,
pp. 312-327, 1975.

[9] Musa, J., Software Reliability Engineering: McGraw-Hill,
1998.

[10] Nagappan, N., "A Software Testing and Reliability Early
Warning (STREW) Metric Suite," PhD Dissertation, North
Carolina State University, 2005.

[11] Rivers, A. T., Vouk, M.A., "Resource-Constrained Non-
Operational Testing of Software," International Symposium
on Software Reliability Engineering, Paderborn, Germany,
1998, pp. 154-163.

[12] Sherriff, M., Nagappan, N., Williams, L., and Vouk, M. A.,
"Early Estimation of Defect Density Using an In-Process
Haskell Metrics Model," First International Workshop on
Advances in Model-Based Software Testing, St. Louis, MO,
May 15-21, 2005, pp. To appear.

[13] Sherriff, M., Williams, L., "Tool Support For Estimating
Software Reliability in Haskell Programs," Student Paper,
IEEE International Symposium on Software Reliability
Engineering, St. Malo, France, 2004, pp. 61-62.

[14] The Programatica Team, "Programatica Tools for Certifiable,
Auditable Development of High-Assurance Systems in
Haskell," High Confidence Software and Systems, Baltimore,
MD, 2003.

[15] Williams, L. and Kessler, R., Pair Programming Illuminated.
Boston: Addison-Wesley, 2002.

	ABSTRACT
	Keywords
	1. INTRODUCTION
	2. BACKGROUND
	2.1 Parametric Modeling
	2.2 Verification and Validation Techniques
	2.3 Metrics to Predict Defect Density

	3. PROPOSED SOLUTION
	4. LIMITATIONS
	5. TOOL SUPPORT
	6. CONCLUSIONS AND FUTURE WORK
	7. REFERENCES

