
A Service Learning Practicum Capstone

Aaron Bloomfield
University of Virginia

aaron@virginia.edu

Mark Sherriff
University of Virginia

sherriff@virginia.edu

Kara Williams
Center for Nonprofit

Excellence
kwilliams@thecne.org

ABSTRACT
We present the design and execution of a Service Learning
Practicum (SLP) course sequence intended to be year-long
capstone for computer science seniors. Students are teamed
into groups of six, and develop software for local nonprofit
organizations. In addition to the structure of the course,
we describe the challenges faced (legal, organizational, etc.),
student perceptions via survey results, and provide a num-
ber of suggestions for other institutions who are looking to
create a similar course sequence. At the end of the cap-
stone experience, the customers are provided with working
software that meet their current needs.

Categories and Subject Descriptors
K.3.2 [Computer and Information Science Education]:
Computer Science Education

General Terms
Management, Human Factors, Legal Factors

Keywords
Capstone courses, service learning, project based learning

1. INTRODUCTION
Keeping students involved and interested in long and com-

plex projects can be challenging for even the most talented
instructor. Toy projects created for pedagogical value can
be useful, but students can often see beyond the assignment
and know that what they are actually working on will not
have any intrinsic value in the future. Layman and Williams
might have put it best when they argued to just “make as-
signments meaningful” [3]. One way to make an assignment
meaningful is to provide a focus for the assignment where
the students are helping others.

We present this experience report describing a Service
Learning Practicum (SLP) that was developed and imple-
mented at the University of Virginia.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGCSE 2014 Atlanta, Georgia USA
ACM 978-1-4503-2605-6/14/03 ...$15.00.
http://dx.doi.org/10.1145/2538862.2538974.

The first of two goals of the SLP is to teach students about
development of large software projects. These are concepts
that are taught in many courses, but due to the nature of
collegiate classes, few courses allow for the development of
large projects in groups. In the SLP, students are teamed
into groups of six students with one adviser or mentor. The
students develop a year-long project in the same manner as
a professional development company. The skills, knowledge,
and concepts that they learned in their various classes can
be put to use, while learning aspects of teamwork, customer
interaction, and management skills.

Developing a project that is “not meaningful” can make
the students feel that their time is not being respected as
burgeoning professionals. This begets the second goal of the
SLP: to write quality software for nonprofits in our com-
munity. Working with nonprofit organizations allows the
students to interact with a real customer, developing real
software with a real purpose. Furthermore, the software
will have a measurable, positive impact on our community.

The result of the SLP is a capstone course that combines a
significant software engineering project – including customer
interaction – with a service learning experience.

We are certainly not the first to present a software en-
gineering based capstone, nor the first to present a service
learning course with a software engineering focus. However,
we feel that we have synthesized the results of previous liter-
ature into the successful creation and implementation of our
SLP, and we provide a number of structural suggestions and
lessons learned that will be of use to a faculty member who
is attempting to implement a similar practicum at his/her
own institution.

2. RELATED WORK
One of the main aspects of service learning courses is in

the idea that the project has intrinsic social value and mean-
ing that the student can believe in. Layman and Williams
examined assignments from CS1 and software engineering
courses and found that computing instructors still need to
look to meaningful assignments for their students [3]. They
note that often the only change necessary for making an
assignment social relevant is a wording or domain change
for a particular computing problem. In our case, students
worked mainly on database-driven web applications. These
could have been for nearly any domain that the instructor
could think of. However, by bringing in nonprofit organi-
zations, the same assignment (creation of a database-driven
web application) suddenly becomes something that the stu-
dents can more easily get behind and be excited for. We

contend that, while coordination is required to get nonprof-
its involved in the projects, the results are worthwhile.

There exist many different models for service learning
courses in computer science. Many are single semester course
offerings where a course project – or perhaps a semester-long
project – is the service learning project itself. Some of these
models were discussed at a recent SIGCSE panel [5].

Carnegie Mellon University has developed a model where
students are consultants, and work with a nonprofit to help
them solve their technical problems. Their approach is more
systems engineering based rather than software based, and
has achieved remarkable success – in the 14 years of the
course’s existence, it has had close to 400 partnerships [4].

Egan and Johnson report on incorporating service learn-
ing into an introductory CS course, as opposed to a capstone-
type course as we implemented [2]. One major advantage
that they saw from their course structure was an increase
in retention rate of students from CS1 to CS2. This follows
from the ideas of Layman and Williams that when assign-
ments are meaningful, students are more engaged and are
more likely to continue. However, other students had a less
positive experience, as they reported additional homework
and pressure on completing the project on time.

Traynor discusses two models for service learning [6]. The
first is an early computing course where the students work
to reduce the “digital divide” separating generations. Each
student is grouped with a senior citizen and a 3rd grade stu-
dent, and helps each of them with learning to use computers
and the Internet. The second model is an upper-level HCI
course where the project is to aid local nonprofits. Service
examples of the latter include creating a website, and rewrit-
ing a computer manual into a format easier to understand
by a non-technical person.

Many other institutions have used single semester courses
where a project – either one of many projects or a semester-
long project – is a service learning project. Since we are
presenting the results of a two-semester service learning cap-
stone sequence, and not a single semester course, we do not
attempt to properly catalog such single semester offerings.

3. COURSE DESIGN
Our Service Learning Practicum was run last year (2012–

2013) as a two semester, fall–spring academic year sequence
(39 students, 7 projects). This year (2013–2014) is an ongo-
ing iterative evolvement of last year (43 students, 7 projects).
This article presents the results of the completed course
(2012–2013), as well as describing some of how we modified
it for the current (2013–2014) academic year.

The course is designed as a practicum-based course, and
not a lecture-based course. Homework assignments for the
course are made up of the multiple deliverables for the in-
dividual student projects. There were no exams, although
there was an final project required of each student.

The course meets three times a week. On Mondays, we
typically have a combined lecture for all the teams on a
topic that we considered important for this course: require-
ments analysis, customer interaction, development method-
ologies, etc. Some Monday lectures are half-lecture, half
group break-out session. Wednesdays are customer meet-
ing days, where teams meet in person with their customer.
These meetings often take place during the scheduled class
period at other places around campus, but students can meet
at another time during the day as well. Fridays are reserved

for team work days. Student teams use the Friday class pe-
riod for meetings with their teammates on particular aspects
of the project or to get more in-depth help from the course
instructor.

For the development of the projects themselves, we use
features from a number of agile development methodolo-
gies. From the Rational Unified Process, we use the con-
cept of inception and some of the documentation. From
Extreme Programming we use the concept of the customer
team member, collective ownership, short cycles, and con-
tinuous integration. From Scrum we use the ideas of regular
scrum meetings, backlogs (both product and sprint), and
burndown charts. We use Redmine, an online project man-
agement system, to help with project organization.

Our sprints or iterations are two weeks in length, and end
on alternating Mondays. The customer meetings typically
occurred on the second day of a sprint, which allowed the
customer to view the results of the previous iteration and
arrive with comments, questions, suggestions, and – all too
often – requirement changes.

4. COMMUNITY PARTNERS
A practicum of this size is not feasible alone. In addition

to the nonprofits that we developed the systems for, there
were others in the community that we worked with.

4.1 Partner Nonprofit
While the course instructors have had some experience

with local nonprofits (serving on boards, previous volunteer
service, etc.), being as we are computer science faculty, non-
profit work is obviously not our primary job. Our contacts,
knowledge, and experience with the local nonprofit commu-
nity were not sufficient to allow us to generate the necessary
response for the SLP. Thus, we needed to reach out to the
nonprofit community.

We were fortunate to be able to partner with the Cen-
ter for Nonprofit Excellence (CNE), a local nonprofit whose
purpose is to strengthen other local nonprofits. CNE is “the
area’s primary resource for nonprofit management, leader-
ship and collaboration” [1]. CNE has contacts with most
of the local nonprofits, and thus has a feel for the type of
projects that can best be of help – and who could most ben-
efit. Indeed, when soliciting projects for the current year, a
single email generated almost 50 nonprofit project requests.
CNE performs a technology survey of nonprofits, and the
results of this survey helped us to identify which nonprofits
would benefit the most from a custom-developed system.

4.2 Mentors
Students working on these projects need advice and guid-

ance, as they never have been involved on a software devel-
opment project of this size. As the size of the course grows,
it is not feasible for the course instructor to be at all the
group meetings – for one reason, many of them are likely
to happen at the same time but in different locations. This
gave rise to the concept of a mentor: a professional software
engineer with years of experience in software development.
One mentor is assigned to each group of six students. A
mentor attends the group meetings with the customer and
generally keeps up with the development of the system. A
mentor’s job is to help advise the students, not to develop
the software. Similarly, a mentor is not meant to be a re-
placement or a surrogate for the course instructor – s/he is

somebody in an advisory role who has a lot of knowledge
and experience in software development, and is interested
in helping out with this type of project. Having a mentor
act in an authoritative role could potentially introduce other
problems – including a situation where a non-university in-
dividual has control over student work – as well as possibly
negatively affect the student-mentor relationship.

The mentorship idea has a number of advantages. It al-
lows the students to benefit from the years of experience
from the mentor. It lets students get to know somebody
in the software business, and helps the mentor get to know
students who may soon be looking for employment. Lastly,
it allows professional software developers to help out a local
nonprofit while using their expertise.

We were concerned that we would not be able to find
enough mentors, even though there are many local software
development companies. However, one email announcement
yielded enough mentors in only a few days, and then we had
to start turning others away. At a meeting of the mentors
and the course instructor, they were all very enthusiastic
about being involved in such a project, and at being able to
help their community while using their specialized training.

We feel that adding computing professionals in both the
service and the educational aspects of the course makes our
version of a service learning experience that much more com-
pelling. Students get to work with a computing professional
who has years of experience, and who can help the students
learn to work effectively with customers. Computing pro-
fessionals similarly get to have an outlet to use their skills
in a socially relevant way. These partnerships can then lead
to more community connections and even to more potential
projects and mentors.

5. PROJECTS
The projects for our service learning course came from

organizations of varied purpose, location, and outreach. In
this section we discuss the challenges of finding the right mix
of projects for students.

5.1 Requirements
Project selection was a challenge for this practicum. A

project must be complex enough to serve as a year-long cap-
stone for six computing seniors, yet be able to be completed
within the context of a single academic year. Duplicating
an existing piece of software did not seem like a viable use
of our time. For example, one nonprofit wanted a system
to manage collaborative document editing, and we referred
them to Dropbox (which is fulfilling their needs quite well).

The course instructor met with various nonprofits during
the summer prior to the academic year to help clarify the
details of each project. This enabled a reasonable estimate
for a properly complex and scoped project to emerge. The
students are presented with a general requirements docu-
ment for each project describing what is desired. Such a
document is typically 3-5 pages, and is meant to get them
started on understanding the technical details of the project.

Properly scoping a project can be a large concern for this
type of course. Indeed, one of the biggest problems we en-
countered in the first instance of the course was trying for
too large of a scope of features to include. To help mitigate
this, each requirements document had three categories of re-
quirements: minimum, desired, and optional. The minimum
requirements are just that – the minimum requirements nec-

essary to have a system that is of value to the nonprofit. The
desired requirements are what we would like to have accom-
plished by the end of the academic year. The optional re-
quirements include features to include if we choose too small
of a scope. The selection was done so that our best estimate
is that the desired requirements are feasible within a single
year. We were highly accurate in this regard this past year.
The students are told that they need to have a prototype of
the system with all the minimum requirements at the end
of the fall semester, and the full system (with all the desired
features) deployed at the end of the academic year. We re-
alize that the original set of minimum and desired require-
ments may not be feasible within the time allowed, and thus
are flexible if those requirements categories need to change.

5.2 Project Restrictions
We specifically avoided certain organizations when we so-

licited projects. Religious organizations were acceptable, as
long as the purpose of the charity – and thus the system
to be developed – was for a secular charitable cause. Sepa-
ration of church and state – as we are a state institution –
dictates the necessity for this, as well as the fact that it may
make some students uncomfortable otherwise. For example,
one nonprofit organization we worked with, Appalachia Ser-
vice Project, is such a religious organization with a secular
charitable purpose.

We also decided that the nonprofit must have a charitable
goal as its primary purpose. Many do not, such as athletic
leagues, political organizations, fraternities and sororities,
etc. Our definition of a political nonprofit here was one that
contributed to one or more political candidates, either di-
rectly (through campaign donations) or indirectly (through
activities such as lobbying).

5.3 Project Examples
In the two years that the SLP has existed, there have been

14 projects, 7 each year. We only describe two projects here;
the full list can be found online1.

Scheduling is a common area in which we found many
projects. There are many organizations who have such spe-
cific scheduling constraints that there are no free or viable
commercial software systems that are able to perform this
scheduling. Since these are nonprofits with limited budgets,
a system may not viable simply be because it is expensive.

The Virginia Institute for Autism works with autistic stu-
dents. Teachers are assigned, generally one-on-one, to indi-
vidual students for six periods throughout the day; teachers
generally change students each period. There are numer-
ous constraints on this scheduling: student and teacher ab-
sences change who is working with who, teachers can only
work with students for which they are trained, lunch requires
other teachers to cover their classes, etc. A daily schedule
takes six people 30 minutes (i.e., 3 person-hours) to create.
With the system in place, it took only one person about 30
minutes to create the schedule, as many pieces of data –
such as who is absent that day – still needed to be entered.

Another common topic for projects was website-based or
smartphone-based systems. There was sufficient complexity
when such things as user accounts, data entry, and custom
searches were features that were included in the system.

Habitat for Humanity of Greater Charlottesville builds
residences for low-income individuals. Once a house is con-

1http://www.cs.virginia.edu/~asb/slp/

structed, Habitat generally hands off the management of
the house to the new owner(s). However, there is interest in
keeping track of the houses in a community that have been
built. Habitat was keeping track of this data in many dis-
parate places. The system that was developed allowed for a
single place to enter the data, and was able to pull results
from the data that was not possible in their previous setup.
This has saved them significant time, especially with their
reporting requirements, as the system can pull the necessary
data from the common database very quickly.

5.4 Students and Projects
Students are allowed to specify their project choice pref-

erences. Since the population size for this is relatively small
(n = 39 students for the 2012-2013 academic year), the
matching and project assignment is performed manually.

Once the student group is assigned, they have to choose a
student to be the project lead. The lead performs much of
the coordination for the team, such as scheduling, keeping
the meetings moving along with their agenda, keeping the
course instructor updated with the overall team progress,
etc. It is an administrative position, not an authoritative
one. We feel that this is a valuable experience for students,
and that all of them should experience it at some point – so
for that reason, the project lead rotates through each of the
students throughout the year; this allows each student to be
the lead for one or two months.

As much as possible, we prefer that team decisions are
made by consensus. Ultimately the customer gets to choose
what features should be implemented, what it should look
like, etc. But the team can choose how it is to be developed
in software. Recall that we did not want the mentors to act
in an authoritative role, as described above.

We require the students to track their time spent on the
project. This allows us to determine, at the end of the year,
how many hours were devoted to nonprofit software devel-
opment – a figure that is particularly useful when analyzing
the impact of the SLP. To prevent hour inflation, we guar-
antee that a student’s grade will never be evaluated based
on the hours they submit. The reality is that if a student is
not contributing sufficiently, there will be ample other ways
to discern this fact.

6. LEGAL ISSUES
In consultation with our university’s general counsel and

the provost’s office, we worked on developing an appropriate
wording for a license with the nonprofit organizations. We
wanted a nonprofit to be able to use the software forever,
but university policy, consistent with US copyright law, dic-
tates that students own the code that they develop. Most
of the projects are developed using interpreted or scripting
languages (PHP and Javascript being the most common),
so the source code was the software. Regardless, one of the
deliverables to the nonprofit would be the source code, even
on a compiled platform; the other deliverables being the
working system and appropriate documentation.

The result was a delicate balance between preserving the
students’ rights to the code they developed while also allow-
ing the nonprofits to use it. The nonprofits would agree to
a perpetual non-commercial, non-distributable, non-revoca-
ble license to the software. In addition, they can modify the
source code. A summary of the license’s terms follows:

• Perpetual: the nonprofit can use this software forever.
• Non-commercial: the nonprofit may not sell the soft-

ware, nor make money off of charging individuals for
using the software (i.e., it must be “free” to use). Some
of the software may not be for public distribution –
such as an internal scheduling system – but any public-
facing part must be able to be used free of charge.

• Non-distributable: the nonprofit may not distribute
the software. University policy (and US copyright law)
dictates that undergraduate students own any code
that they develop for a course (this is different than
if a student is paid for the software development, such
as a graduate student or a paid undergraduate research
assistant). Because of this policy, the nonprofits do not
own the code, and thus they cannot distribute it.

• Non-revocable: the license cannot be taken back from
the nonprofit by the students or by the university.

• Modifiable software: the nonprofit would gain the ac-
tual source code; as mentioned above, it is often the
case that the software is the source code, but even
with a compiled system, the nonprofit would receive
the source code. They are allowed to modify it, such
as by hiring a developer to add features or remove bugs
in the future; this modified version also cannot be dis-
tributed or sold.

Note that the agreement does not lessen students’ rights
at all; it only grants some (limited) rights to the nonprofit.
While we could not require students to sign it, we did not
encounter any significant opposition with the students sign-
ing the agreement. As the students owned the software, it
was their decision as to what to do with it – release it under
an open source license, attempt to sell it, etc.

As the course instructors, we developed some software for
the projects, typically in the form of tutorials and source
code examples. A conflict of interest situation arose here.
We were developing software as part of our salaried job, giv-
ing it to students, and potentially claiming ownership of this
code – which could imply partial ownership of the system,
and thus could allow us to make a claim to some monetary
gains if the students sold their code. For this reason, the
course instructors relinquished any rights to the code that
we provided to the students. Mentors do not develop any
source code, and thus do not need to agree to this license.

The other legal concern that we encountered was the use
of existing source code. There are many licenses that ex-
ist that both open source and free software are distributed
under. Some licenses – specifically the GNU Public License
(GPL) – require that any software developed that uses that
GPL code be publicly distributed under a GPL-compatible
license (which is usually just the GPL itself). This meant
that students could not use any GPL software unless they
were willing to publicly release their entire system under the
GPL. Note that this does not apply to linking to a library
compiled under the GPL – those libraries are generally cov-
ered under the LGPL license, which allows for linking with-
out release of source code. While many people tend to ignore
these licensing issues, because we were developing real soft-
ware for other organizations, it was necessary to carefully
adhere to the software license requirements.

There are many licenses that do not have the so-called“vi-
ral” licensing restrictions of the GPL. Such licenses – such as
the Apache License, the MIT License, and the Mozilla Pub-
lic License – allow for use of such code in a system without

releasing the resultant source code to the public; however,
one must typically include credit to the source code used
(how this is to be done varies by the license).

7. LESSONS LEARNED
We felt the course was a success in most regards – students

learned a lot, we delivered quality software, the nonprofits
were happy with the results, and the community-student
interaction was allowed to flourish. However, there are some
important lessons learned that we share here.

Customer involvement. The customers were, generally,
not familiar with software development. One of the
aspects of Extreme Programming is the idea of the
customer team member. We attempted this last year,
but we did not sufficiently set the expectations of what
is needed from the customer ahead of time. Some cus-
tomers were very involved, and their projects flour-
ished. Other customers put in the minimal amount
of work necessary, and their projects did not fare so
well. In the current year, we have created a customer
agreement, which outlines what is expected of the cus-
tomer. In particular, we mention three aspects: bi-
weekly meetings, providing regular feedback, and early
testing of the system. We feel that this agreement, and
the associated sufficient buy-in from the customers,
will solve the vast majority of the issues that arose
last year.

Project start-up and transition. There is a large ramp-
up at the beginning of the year, as the students ac-
climate to the project and the technologies used. In
particular, learning the software framework will take
them some time. In the second year of this course,
we had them start on the projects two weeks into the
semester. This year we are having them spend two
more weeks (for a total of four) working on individual
assignments meant to teach them the framework. This
lessened the number of iterations by one, but allowed
them to have a better understanding of how to design
the system for when they start on their group project.

Towards the end of the project, there is the deploy-
ment, maintenance, testing, and documentation – all
tasks that take non-zero time. We started planning
for deployment as soon as the spring semester started,
and it was still not enough time for two of the projects.
This year, we worked with the customer to determine
reasonable expectations before the deployment phase
to hopefully alleviate this issue come this spring.

Maintenance Connected with the project transition lesson
is the proper way to handle project maintenance post-
release. At the end of the course, the nonprofits that
we developed the projects for were quite happy with
the results. We were generally able to complete the re-
quirements specified. However, there is little means for
maintenance, as the students will graduate and move
on with their lives shortly after project delivery. We
did ask the students at the end of the semester if they
were willing to be contacted about helping to main-
tain the project in the future, and 79% of the class
indicated they would (and at least 4 from each group).

Thus, it is critical that the nonprofits have some means
to maintain the system. This could be through a vol-
unteer in the community who is willing to take over
this task; however, finding one skilled in the frame-
work is a challenge. Local companies may be willing
to take this over as well. On some projects, the stu-
dents themselves were willing to be contacted again
to help maintain the system, as they felt emotionally
invested.

Requirement solicitation We quickly realized that the
requirements needed to have some flexibility. Thus,
we split the requirements into “minimum”, “desired”,
and “optional”, as described above. This allows us to
focus on the core system first, the ideal system next,
and then expand if they end up with extra time later.

8. RESULTS
At the end of the spring 2013 semester, we had the stu-

dents fill out an extensive survey detailing their perception
of the class and the various aspects therein. The survey
consisted of both text fill-in answers as well as 5-point Lik-
ert questions. All the Likert questions were on a 1 to 5
scale. For the course-wide questions, n = 38. The results
are shown in Table 1. For the results for a particular group
(not shown in the table, but described below), n = 6.

All the projects had some requirement changes, and the
number of changes was rated at 3.50. In one project, the
customer changed her mind on the first day, and in another
project the goal was to develop many of the requirements
during the year. If you take these two projects out of con-
sideration, then the overall rating of how many requirements
changed was 3.10, which is very close to the“neutral”answer,
meaning that it was a reasonable amount of changes for a
project like this. The requirements changes were considered
somewhat predictable by the students (3.13).

Satisfaction with the customers by the students was high
(4.11), although one group was much less satisfied with their
customer (3.00). We knew that this particular customer was
a problem during the school year. If one does not consider
that one group, then overall customer satisfaction increases
to 4.35. Interestingly, this one group with low customer sat-
isfaction was also the group that had the overall least project
satisfaction (4.17), even though they were still mostly satis-
fied with their project. That project ran into many technical
difficulties, so there were certainly other factors contributing
to their lower project satisfaction.

Satisfaction of the mentors by the students was a bit lower,
at 3.89. We attribute this to a number of factors. One was
a lack of a clear set of mentor expectations. Another is that
the mentors often were busy, and thus unable to attend the
group meetings. However, the feedback that they provided
was considered very helpful (4.18), and the students gen-
erally recommended the customers again (4.16), although
there was much variation in the mentor survey results.

Overall project satisfaction was high (4.48), and students
felt they would likely have chosen the project again, if they
knew then what they know now (4.03). We were pleased to
see that the groups worked together quite well (4.47).

We did not perform a formal survey of the customers.
However, we do have some anecdotal evidence: each cus-
tomer was contacted about their overall satisfaction, and all
the responses were positive.

Question Likert 1-5 scale Avg Stdev
(1 is a “bad” result, 3 is neutral, and 5 is a “good” result)

Overall project satisfaction? 1 = very unsatisfied, 5 = very satisfied 4.45 0.76
How well did the group work together? 1 = terrible, 5 = wonderful 4.47 0.56
Amount of requirements that changed? 1 = everything, 5 = nothing 2.50 1.08
Predictability of requirements changes? 1 = very predictable, 5 = very unpredictable 2.87 0.70
Helpfulness of Redmine? 1 = very unhelpful, 5 = very helpful 3.97 0.94
Usefulness of group workdays in lecture? 1 = very useless, 5 = very useful 4.11 0.98
How burdensome were the reports? 1 = very burdensome, 5 = very unburdensome 3.50 0.98
Customer attentiveness? 1 = very inattentive, 5 = very attentive 3.79 1.19
Customer feedback usefulness? 1 = completely useless, 5 = very useful 3.71 1.23
Satisfied with the customer? 1 = very unsatisfied, 5 = very satisfied 4.11 0.89
Recommend customer again? 1 = never, 5 = completely 3.97 1.10
Mentor attentiveness? 1 = very inattentive, 5 = very attentive 3.34 1.02
Mentor feedback usefulness? 1 = completely useless, 5 = very useful 4.18 0.80
Satisfied with the mentor? 1 = very unsatisfied, 5 = very satisfied 3.89 0.92
Recommend mentor again? 1 = never, 5 = completely 4.16 0.95
Overall satisfaction with project? 1 = very unsatisfied, 5 = very satisfied 4.50 0.56
Choose project again? 1 = definitely not, 5 = definitely 4.03 1.13
Opinion of framework used? 1 = worst thing ever, 5 = greatest thing ever 4.18 0.87

Table 1: End of year survey questions and results (n = 38)

The students were required to report their hours. The
projects had, on average, 703 hours spent throughout the
entire year. The standard deviation was high (153), as might
be expected from a group of such disparate projects. We
believe the number of hours spent to be much higher, as we
know many students did not report all of their hours.

9. CONCLUSIONS
We consider last year’s SLP to have been a success. The

students were very satisfied with their projects, and the non-
profits were happy with the results. The nonprofits were
all presented with systems that fulfilled the agreed-upon re-
quirements. For many of the nonprofits, this will save them
a significant amount of time. We have addressed the rea-
sons some projects did not fully succeed; many of those are
inclued in the lessons learned section, above.

Based on the number of hours contributed to each project
(we had students track their time) we generated an estimate
for the monetary contribution of each project. If you assume
a $100 salary per hour for a software developer, then the av-
erage contribution per project was $69,852 – and there were
7 projects. Thus, there was almost half a million dollars
of free software development contributed to the community.
Even if you assume a lower per-hour salary, it is still a sig-
nificant contribution.

The nonprofits for the current year are quite excited about
the projects that have been selected. Many of the projects
will save the respective nonprofit staff members multiple
hours of work per week. Others will save a significant amount
of money from not having to hire a professional developer
to create such a system for them. The projects will allow
those nonprofits to focus their resources – both staff time
and financial resources – on other areas to better help the
community.

10. FUTURE WORK
This past summer a significant amount of time was spent

approaching the nonprofits about potential projects, as well
as trying to scope out these projects. As word of this pro-

gram spreads, we hope to have an application process where
the nonprofits will apply for such a project. The goal is
to work with the nonprofits to ensure that their requested
project meets the necessary requirements (viable within a
one-year course, of sufficient complexity, etc.). A commit-
tee of faculty, professional software developers (likely the
mentors of the projects), and individuals from the nonprofit
community will then decide which projects are the best fit
for the SLP and the community. We intend to implement
this in the spring of 2014 for the 2014–2015 academic year.

11. REFERENCES
[1] CNE. Center for Nonprofit Excellence, 2012.

http://www.thecne.org.

[2] M. A. L. Egan and M. Johnson. Service learning in
introductory computer science. In Proceedings of the
fifteenth annual conference on Innovation and
technology in computer science education, ITiCSE ’10,
pages 8–12, New York, NY, USA, 2010. ACM.

[3] L. Layman, L. Williams, and K. Slaten. Note to self:
make assignments meaningful. In Proceedings of the
38th SIGCSE technical symposium on Computer
science education, SIGCSE ’07, pages 459–463, New
York, NY, USA, 2007. ACM.

[4] J. Mertz and S. McElfresh. Teaching communication,
leadership, and the social context of computing via a
consulting course. In Proceedings of the 41st ACM
technical symposium on Computer science education,
SIGCSE ’10, pages 77–81, New York, NY, USA, 2010.
ACM.

[5] J. A. Stone, B. MacKellar, E. M. Madigan, and J. L.
Pearce. Community-based projects for computing
majors: opportunities, challenges and best practices. In
Proceedings of the 43rd ACM technical symposium on
Computer Science Education, SIGCSE ’12, pages
85–86, New York, NY, USA, 2012. ACM.

[6] C. Traynor and M. McKenna. Service learning models
connecting computer science to the community.
SIGCSE Bull., 35(4):43–46, Dec. 2003.

