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Abstract—Association rule mining (ARM) is a widely used
data mining technique for discovering sets of frequently as-
sociated items in large databases. As datasets grow in size
and real-time analysis becomes important, the performance
of ARM implementation can impede its applicability. We
accelerate ARM by using Micron’s Automata Processor (AP), a
hardware implementation of non-deterministic finite automata
(NFAs), with additional features that significantly expand
the APs capabilities beyond those of traditional NFAs. The
Apriori algorithm that ARM uses for discovering itemsets
maps naturally to the massive parallelism of the AP. We
implement the multipass pruning strategy used in the Apriori
ARM through the APs symbol replacement capability, a form of
lightweight reconfigurability. Up to 129X and 49X speedups are
achieved by the AP-accelerated Apriori on seven synthetic and
real-world datasets, when compared with the Apriori single-
core CPU implementation and Eclat, a more efficient ARM
algorithm, 6-core multicore CPU implementation, respectively.
The AP-accelerated Apriori solution also outperforms GPU im-
plementations of Eclat especially for large datasets. Technology
scaling projections suggest even better speedups from future
generations of AP.

Keywords-Automata Processor; association rule mining; fre-
quent set mining

I. INTRODUCTION

Association Rule Mining (ARM), also referred to as

Frequent Set Mining (FSM), is a data-mining technique that

identifies strong and interesting relations between variables

in databases using different measures of “interestingness”.

ARM has been the key module of many recommendation

systems and has created many commercial opportunities for

on-line retail stores. In the past 10 years, this technique has

also been widely used in web usage mining, traffic accident

analysis, intrusion detection, market basket analysis, bioin-

formatics, etc.

As modern databases continue to grow rapidly, the ex-

ecution efficiency of ARM becomes a bottleneck for its

application in new domains. Many previous studies have

been devoted to improving the performance of sequential

CPU-based ARM implementations. Different data structures

were proposed, including horizontal representation, vertical

representation, and matrix representation [1]. Multiple algo-

rithms have been developed including Apriori [2], Eclat [3]

and FP-growth [4]. A number of parallel acceleration based

solutions have also been developed on multi-core CPU [5],

GPU [6] and FPGA [7].

Recently, Micron proposed a novel and powerful non-von

Neumann architecture, the Automata Processor (AP). The

AP architecture demonstrates a massively parallel computing

ability through a large number of state elements. It also

achieves fine-grained communication ability through its con-

figurable routing mechanism. These advantages make the AP

suitable for pattern-matching centered tasks like ARM. Very

recently, the AP has been successfully used to accelerate

the tasks of regular expression matching [8] and DNA motif

searching [9].

In this paper, we propose an AP-based acceleration solu-

tion for ARM. A Non-deterministic Finite Automata (NFA)

is designed to recognize the sets of frequent items. Counter

elements of the AP are used to count the frequencies of

itemsets. We also introduce a number of optimization strate-

gies to improve the performance of AP-based ARM. On

multiple synthetic and real-world datasets, we compare the

performance of the proposed AP-accelerated Apriori versus

the Apriori single-core CPU implementation, as well as

multicore and GPU implementations of the Eclat algorithm.

The proposed solution achieves up to 129X speedups when

compared with the Apriori single-core CPU implementation

and up to 49X speedups over multicore implementation of

Eclat. It also outperforms GPU implementations of Eclat in

some cases, especially on large datasets.

Overall, this paper makes three principal contributions:

1) We develop a CPU-AP computing infrastructure to

improve the Apriori algorithm based ARM.

2) We design a novel automaton structure for the match-

ing and counting operations in ARM. This structure

avoids routing reconfiguration of the AP during the

mining process.

3) Our AP ARM solution shows performance improve-

ment and broader capability over multi-core and GPU

implementations of Eclat ARM on large datasets.

II. ASSOCIATION RULE MINING

Association rule mining (ARM) among sets of items was

first described by Agrawal and Srikant [10]. The ARM

problem was initially studied to find regularities in the



shopping behavior of customers of supermarkets and has

since been applied to very broad application domains.

In the ARM problem, we define I = i1, i2, ..., im as a set

of interesting items. Let T = t1, t2, ..., tn be a database of

transactions, each transaction tj is a subset of I . Define xi =
{is1, is2, ..., isl} be a set of items in I , called an itemset. The

itemset with k items is called k-itemset. A transaction tp is

said to cover the itemset xq iff xq ⊆ tp. The support of

xq , Sup(xq), is the number of transactions that cover it. An

itemset is known as frequent iff its support is greater than a

given threshold value called minimum support, minsup. The

goal of association rule mining is to find out all itemsets

which supports are greater than minsup.

III. AUTOMATA PROCESSOR

Micron’s Automata Processor (AP) is a massively parallel

non-von Neumann accelerator designed for high-throughput

pattern mining.

A. Function elements

The AP chip has three types of functional elements - the

state transition element (STE), the counters, and the Boolean

elements [8]. The state transition element is the central

feature of the AP chip and is the element with the high-

est population density. Counters and Boolean elements are

designed to work with STEs to increase the space efficiency

of automata implementations and to extend computational

capabilities beyond NFAs.

B. Speed and capacity

Micron’s current generation AP - D480 chip is built

on 45nm technology running at an input symbol (8-bit)

rate of 133 MHz. The D480 chip has two half-cores and

each half-core has 96 blocks. Each block has 256 STEs, 4

counters and 12 Boolean elements. In total, one D480 chip

has 49,152 processing state elements, 2,304 programmable

Boolean elements, and 768 counter elements [8]. Each AP

board can have up to 48 AP chips that can perform matching

in parallel [11]. Each AP chip has a worst case power

consumption of 4W [8]. The power consumption of a 48-

core AP board is similar to a high-end GPU card.

Each STE can be configured to match a set of any 8-bit

symbols. The counter element counts the occurrence of a

pattern described by the NFA connected to it and activates

other elements or reports when a given threshold is reached.

One counter can count up to 212 which may not be enough

for ARM counting in some cases. In such a scenario, two

counters can be combined to handle a larger threshold.

Counter elements are a scarce resource of the AP current-

generation chip and therefore are a main limiting factor of

the capacity of the ARM automaton proposed in this work.

C. Input and output

The AP takes input streams of 8-bit symbols. Each AP

chip is capable of processing up to 6 separate data streams

concurrently, although we do not use this feature for this

work. The data processing and data transfer are implicitly

overlapped by using the input double-buffer of the AP chip.

Any STE can be configured to accept the first symbol in the

stream (called start-of-data mode, small “1” in the left-upper

corner of STE in the following automaton illustrations), to

accept every symbol in the input stream (called all-input

mode, small “∞” in the left-upper corner of STE in the

following automaton illustrations) or to accept a symbol only

upon activation. The all-input mode will consume one extra

STE.

Any type of element on the AP chip can be configured

as a reporting element; one reporting element generates a

one-bit signal when the element matches the input symbol.

One AP chip has up to 6144 reporting elements. If any

reporting element reports at a cycle, the chip will generate an

output vector which contains signals of “1” corresponding

to the elements that report at that cycle and “0”s for

reporting elements that do not report. If too many output

vectors are generated, the output buffer can fill up and stall

the chip. Thus, minimizing output vectors is an important

consideration for performance optimization.

D. Programming and reconfiguration

Automata Network Markup Language (ANML) is an

XML language for describing the composition of automata

networks. ANML is the basic way to program automata on

the AP chip. Besides ANML, Micron provides a graphical

user interface tool called the AP Workbench for quick

automaton designing and debugging. A “macro” is a con-

tainer of automata for encapsulating a given functionality,

similar to a function or subroutine in common programming

languages. A macro can be defined with parameters of

symbol sets of STEs and counter thresholds which can be

instantiated with actual arguments. Micron’s AP SDK also

provides C and Python interfaces to build automata, create

input streams, parse output and manage computational tasks

on the AP board.

Placing automata onto the AP fabric involves three steps:

compilation optimization, routing configuration and STE

symbol set configuration. The initial compilation of au-

tomata onto the AP involves all these three steps, while the

pre-compiled automata only requires the last two steps. The

compilation optimization usually takes tens of seconds. The

routing configuration of the whole board needs about 5 mil-

liseconds. The symbol set configuration takes approximately

45 milliseconds for an entire board.



IV. RELATED WORK

A. Sequential algorithms

After describing the association rule mining problem [10],

Agrawal and Srikant proposed the Apriori algorithm. The

Apriori algorithm is a well known and widely used algo-

rithm. It prunes the search space of itemset candidates in

a breadth-first-search scheme the using downward-closure

property.

The Equivalent Class Clustering Eclat algorithm was

developed by Zaki [3]. The typical Eclat implementation

adopts a vertical bitset representation of transactions and

depth-first-search. The low level operation, e.g. the bit-level

intersection of two itemsets, exposes more instruction-level

parallelism, which enables Eclat to outperform Apriori on

conventional architectures.

Han et al. [4] introduced another popular ARM algorithm,

FP-growth. By utilizing a Frequent-Pattern tree data struc-

ture to avoid multi-pass database scanning, FP-growth has

very good performance in many cases. However, the poor

memory-size scaling of the Frequent-Pattern tree prevents

the use of FP-growth for very large databases.

B. Multi-thread & multi-process

Zaki et al. [12] developed a parallel version of the Apriori

algorithm for a shared memory (SM) multi-core platform.

This implementation achieved 8X speedup on a 12-processor

SM platform for synthetic datasets. Liu et al. [13] proposed

a parallel version of FP-growth on a multi-core processor.

This work achieved 6X speedup on an 8-core processor.

Pramudiono and Kitsuregawa [14] proposed a parallel

algorithm of FP-growth achieving 22.6X speedup on a 32-

node cluster. Ansari et al. [15] developed an MPI version

of the Apriori algorithm and achieved 6X speedup on an

8-node cluster.

C. Accelerators

An FPGA-based solution was proposed to accelerate the

Eclat algorithm [7] by Zhang et al. This solution achieved

a speedup of 68X on a four-FPGA board with respect to the

CPU sequential implementation of Eclat.

Fang et al. [16] designed a GPU-accelerated implementa-

tion of Apriori. 2X-10X speedup is achieved with NVIDIA

GeForce GTX 280 GPU when compared with CPU se-

quential implementation. Zhang et al. [6] proposed another

GPU-accelerated Eclat implementation and achieved 6X-

30X speedup relative to the state-of-the-art sequential Eclat

and FP-Growth implementations. Zhang also proposed the

Frontier Expansion algorithm, which hybridizes breadth-

first-search and depth-first-search to expose more parallelism

in this Eclat implementation. This implementation also

generalizes the parallel paradigm by a producer-consumer

model that makes the implementation applicable to multi-

core CPU and multiple GPUs.

According to the previous cross-algorithm comparison,

there is no clear winner among the different sequential al-

gorithms and implementations [17]. However, to our knowl-

edge, Zhang’s Eclat [6] is the fastest parallel ARM im-

plementation. Thus we compare our AP-accelerated Apriori

implementation with Zhang’s parallel Eclat implementation

on both multi-core CPU and GPU platforms. However,

as more parallelism is exposed, the vertical representation

of many itemsets has to be kept in the memory (main

memory or GPU global memory) simultaneously. The trade-

off between memory and performance (parallelism) still

exists, particularly for large datasets on the GPU. In contrast,

our AP-accelerated Apriori solution does not rely on local

memory and therefore is less sensitive to the data size.

Further exploration is needed regarding how different al-

gorithms scale with diverse multicore CPUs and specialized

accelerators, and the role of optimization techniques such as

blocking and data-layout optimization. This is an interesting

area for future work.

V. MAPPING ARM PROBLEM ONTO THE AP

A. Apriori Algorithm

The Apriori algorithm framework is adopted for the AP

to reduce the search space as itemset size increases. The

Apriori algorithm is based on downward-closure property:

all the subsets of a frequent itemset are also frequent and

thus for an infrequent itemset, all its supersets must also be

infrequent. In the Apriori framework, candidates of (k+1)-
itemsets are generated from known frequent k-itemsets by

adding one more possible frequent item. The mining begins

at 1-itemset and the size of candidate itemsets increases by

one at each level. In each level the Apriori algorithm has

two major operations:

1) Generating candidates of frequent (k + 1)-itemsets

from known frequent k-itemsets

2) Counting support numbers of candidate itemsets and

comparing these support numbers with minsup

The support counting step is the performance bottleneck

of the Apriori algorithm, particularly for the large databases.

The hardware features of the AP are well suited for matching

and support-counting many itemsets in parallel. Therefore,

we propose to use the AP to accelerate the support-counting

step in each level.

B. Program infrastructure

Figure 1 shows the complete workflow of the AP-

accelerated ARM proposed in this paper. The data prepro-

cessing stage creates a data stream from the input transac-

tional dataset and makes the data stream compatible with the

AP interface. Preprocessing consists of the following steps:

1) Filter out infrequent items from transactions

2) Recode items into 8-bit or 16-bit symbols

3) Recode transactions



4) Sort items in transactions

5) Connect transactions by a special separator symbol to

form the input data stream for the AP

Step 1 is a common step in almost all existing ARM

implementations that helps to avoid unnecessary computing

on infrequent items and reduces the number of items and

transaction sizes. Depending on the population of frequent

items, the items can be encoded by 8-bit (freq item# <

255) or 16-bit symbols (254 < freq item# < 64516)

in step 2. Different encoding schemes lead to different

automaton designs. Step 3 deletes infrequent items from the

transactions, applies the codes of items to all transactions,

encodes transaction boundary markers, and removes very

short transactions (less than two items). Step 4 sorts items

in each transaction (in any given order) to avoid needing to

consider all permutations of a given itemset, and therefore

saves STE resources on the AP. We adopt descending sorting

according to item frequency (proposed by Borgelt [18]).

The data pre-processing is only executed once in the whole

workflow.

Each iteration of the loop shown in Figure 1 explores all

frequent k-itemsets from the candidates generated from (k−
1)-itemsets. The candidates are generated from the CPU and

are compiled onto the AP by using the automaton structure

designed in this paper. The input data formulated in pre-

processing is then streamed into the AP for counting.

C. Automaton for matching and counting

Figure 2 shows the initial automaton design for ARM.

The items are coded as digital numbers in the range from

0 to 254, with the number 255 reserved as the separator

of transactions. Each automaton for ARM has two compo-

nents: matching and counting. The matching component is

implemented by an NFA, the groups of STEs in Figure 2a

and 2b, to recognize a given itemset. Note that unlike string

matching, the itemset matching in ARM needs to consider

the cases of discontinuous patterns of items.

For example, consider the itemset of {6,11}; in trans-

actions such as [1,6,11] or [3,6,11,15], item “11” is next

to item “6”, while, in other cases such as [2,6,8,11] or

[6,7,8,9,11], there are an unknown number of items between

“6” and “11”. The NFA we designed can capture all possible

continuous and discontinuous variants of a given itemset.

The only requirement is the order of items appearing in the

transactions, which is already guaranteed by sorting in data

pre-processing.

As shown in Figure 2, the NFA for itemset matching can

be divided into multiple levels. Each level except “Level

0” has two STEs: the top STE holds the activation in this

level and the bottom STE triggers the next level if one

item in a given transaction matches it. For each automaton

corresponding to a given itemset, activation begins at “Level

0” and will move forward (to the right) to “Level 1” when

the transaction separator is seen in the input. Each level will

Figure 1: The workflow of AP-accelerated ARM

Level 0  Level 1  Level 2  Level 3 

Coun.ng  

component  

(a) Automaton for itemset {0, 2}

Level 0  Level 1  Level 2  Level 3  Level 4 

Coun/ng  

component  

(b) Automaton for itemset {1, 3, 5}

Figure 2: Initial design of automata for ARM itemset match-

ing and support-counting. Blue circles and black boxes are

STEs and counters, respectively. The numbers on an STE

represent the symbol set that STE can match. “0:254” means

any item ID in the range of 0-254. Symbol “255” is reserved

as the transaction separator.



Figure 3: Optimization for minimizing the output. The node

with 254 is the ”reporter”.

trigger the next level if the item represented by this level

(bottom STE) is seen in the input. If the item of the current

level is not seen, the activation of the current level will be

held by the top symbol, until the end of this transaction when

separator symbol is seen. The itemset matching is restarted

in the beginning of each transaction by the “Level 0” STE.

The counting component uses an on-chip counter element

to calculate the frequency of a given itemset. If the last level

has been triggered, the matching component waits for the

separator symbol to indicate the end of a transaction. The

separator symbol then activates the counter, incrementing it

by one. If the threshold, which is set to minsup, is reached

in the counter, this automaton produces a report signal at

this cycle. After processing the whole dataset on the AP, the

output vectors are retrieved. Each itemset with a frequency

above the minimum support will appear in the output.

Although the automata shown in Figure 2 already implement

the basic functions of matching and counting for ARM,

there is still much room for performance optimization. We

will talk about the performance optimization in the next

subsection. We only show the automata for 8-bit encoding

scheme in this paper. The automata for 16-bit encoding

scheme are designed in a similar way but use two connecting

STEs to match an item.

D. Performance optimization

In this paper we propose three optimization strategies to

maximize the computation performance of the AP.

1) Output optimization: The first strategy is to minimize

the output from the AP. In the initial automaton design

shown in Section V-C, the AP chip creates a report vector at

each cycle whenever there is at least one counter report. Each

report vector carries the information about the cycle count

for this report. Therefore, the AP chip creates many report

vectors during the data processing. These report vectors may

fill up the output buffers and cause stalls during processing.

However, solving the ARM problem only requires iden-

tifying the frequent itemsets; the cycle at which a given

itemset reaches the minimum support level is irrelevant. We

therefore modify the design of the reporting element and

postpone all reports to the last cycle (Figure 3). We utilize

the “latch” property of the counter to keep activating another

STE connected to this counter after the counter minsup is

reached. We call this STE the “reporter”. One symbol (i.e.,

254) is reserved to indicate the end of a transaction stream

and this end-of-stream symbol matches to the reporter STE

and triggers the actual output. Consequently, the global set

of items is 0-253, which ensures that the ending symbol 254

will not appear in the middle of the transaction stream. With

this modification, only one output vector will be produced

in the end of data stream.

Another benefit of this modification is that it elimi-

nates the need to merge multiple report vectors as a post-

processing step on the CPU. Instead, the counting results

can be parsed from only one report vector.

2) Avoid routing reconfiguration: As shown in Figure 2,

when the mining of k-itemsets finishes, the automata for

(k+1)-itemset need to be compiled onto the AP to replace

the automata for k-itemsets. The automata reconfiguration

involves both routing reconfiguration and symbol replace-

ment steps, because the NFAs that recognize itemsets of

different sizes have different structures (compare Figure 2a

and Figure 2b). On the other hand, the AP also provides

a mechanism to only replace the symbol set for each

STE while the connections between AP elements are not

modified. The time of symbol replacement depends on how

many AP chips are involved. The max symbol replacement

time is 45ms if all STEs update their symbol sets.

To remove the routing reconfiguration step, we propose

a general automaton structure supporting itemsets with dif-

ferent sizes. The idea is to add multiple entry paths to the

NFA shown in Figure 2. To count the support of a given

itemset, only one of the entry paths is enabled by matching

to the transaction separator symbol, while the other entry

paths are blocked by a reserved special symbol. This special

symbol can be the same as the data stream ending symbol

(i.e., “254”) discussed in Section V-D1. This structure is

called multiple-entry NFA for variable-size itemset (ME-

NFA-VSI). 10% total reconfiguration time, 5ms, is saved

by using the ME-NFA-VFI structure.

Figure 4 shows a small-scale example of an ME-NFA-

VSI structure that can count an itemset of size 2 to 4.

Figure 4a shows the ANML macro of this ME-NFA-VSI

structure, leaving some parameters to be assigned for a

specific itemset. %e01 - %e03 are symbols for three entries.

An entry can be configured as either “255” or “254”, to

present “enabled” and “disable” status. Only one entry is

enabled for a given itemset. %I represents the global set of

items, I . %i01 - %i04 are individual symbols of items in

the itemset. %SP is the transaction separator and %END is

the ending symbol of the input stream.

To count a 2-itemset, the first two entries are blocked by

“254” and the third entry is enabled by “255” (Figure 4b).

Similarly, this structure can be configured to counting a 3-

itemset and a 4-itemset by enabling a different entry point

(Figure 4c and 4d).

Another optimization has been made to reduce STE usage



of ME-NFA-VSI structure by switching entry STEs from

all-input mode to start-of-data mode with a bi-directional

connection to “%I” STE (Figure 4a). The max number

of the optimized ME-NFA-VSI structures that can fit on

the AP chip is mainly limited by the number of counter

elements. Therefore it is possible to compile large ME-NFA-

VSI structures on the AP chip without sacrificing capacity. In

the 8-bit symbol encoding scheme, one block of the AP chip

can support two ME-NFA-VSI structures that match itemsets

of size 2 to 40. For the 16-bit-symbol encoding scheme, we

use an ME-NFA-VSI structure that matches itemset of size

2 to 24. 24 is a reasonable upper bound of itemset size we

discovered in our test cases.

3) Concurrent mining k-itemset and (k + 1)-itemset:

At the very beginning (k is small) and the end (k is

large) of mining, the number of candidates could be too

small to make full use of the AP board. In these cases,

we predict the number candidates of the (k + 1)-itemset

by assuming all k-itemset candidates are frequent. If the

total number of k-itemset candidates and predicted (k+1)-
itemset candidates can fit onto the AP board, we generate

(k+1)-itemset candidates and concurrently mine frequent k-

itemsets and (k+1)-itemsets in one round. This optimization

takes advantage of unified ME-NFA-VSI structure and saves

about 5%-10% AP processing time in general.

VI. EXPERIMENTAL RESULTS

The performance of our AP implementation is evaluated

using CPU timers (host codes) and an AP simulator in the

AP SDK [11] (AP codes), assuming a 48-core D480 AP

board.

A. Capacity and Overhead

In our experiments, our AP-accelerated Apriori algorithm

(Apriori-AP) switches between 8-bit and 16-bit encoding

schemes automatically in the “data preprocessing” stage

shown in the flowchart (Figure 1). In an 8-bit scheme, the

items are coded with symbols from “0” to “253”. If more

than 254 frequent items are represented after filtering, two

8-bit symbols are used to represent one item (16-bit symbol

scheme). In both encoding schemes, the symbol “255” is

reserved for the transaction separator, and the symbol “254”

is reserved for both the input ending symbol and the entry-

blockers for the ME-NFA-VSI structure. By using the ME-

NFA-VSI structure, one AP board can match and count

18,432 itemsets in parallel with sizes from 2 to 40 for 8-

bit encoding and 2 to 24 for 16-bit encoding. In all our

experiments, 24 is a reasonable upper bound of the sizes

of the itemsets. If there are more than 18,432 candidate

itemsets, multiple passes are required. Before each single

pass, a symbol replacement process is applied to reconfigure

all ME-NFA-VSI structures on the board, which takes 0.045

second.

Entry 1  Entry 2  Entry 3 

(a) AP macro of ME-NFA-VSI

(b) Automaton for itemset {1, 3}

(c) Automaton for itemset {2, 7, 8}

(d) Automaton for itemset {4, 5, 25, 30}

Figure 4: A small example of multiple-entry NFA for

variable-size itemset support counter for 2-itemset, 3-

itemset, and 4-itemset. (a) is the macro of this ME-NFA-VSI

with parameters.



B. Comparison with other implementations

We use the computation times from Borgelt’s Apriori

CPU sequential implementation [18] (Apriori-CPU) as a

baseline. Because the AP accelerates the counting operation

at each Apriori iteration, we show the performance results of

both the counting operation and the overall computation in

this section. We also compare a state-of-the-art CPU serial

implementation of Eclat (Eclat-1C), a multi-threading imple-

mentation of Eclat (Eclat-6C) [6] and a GPU-accelerated

implementation of Eclat (Eclat-1G) [6]. All of the above

implementations are tested using the following hardware:

• CPU: Intel(R) Xeon(R) CPU E5-1650(6 physical cores,

3.20GHz)

• Mem: 32GB, 1.333GHz

• GPU: Nvidia Kepler K20C, 706 MHz clock, 2496

CUDA cores, 4.8GB global memory

For each benchmark, we compare the performance of the

above implementations over a range of minimum support

values. A lower support number requires a larger search

space and more memory usage, since fewer itemsets are

filtered during mining. To have all our experiments finished

in a reasonable time, we select minimum support numbers

that produce computation times of the Apriori-CPU imple-

mentation that is in the range from 1 second to 5 hours for

any dataset smaller than 1GB and from 1 second to 10 hours

for larger datasets. The relative minimum support number,

defined as the ratio of minimum support number to the total

number of transactions, is used in the figures of this section.

C. Datasets

Three commonly-used real-world datasets from the Fre-

quent Itemset Mining Dataset Repository [19], three syn-

thetic datasets and one real-world dataset generated by

ourselves (ENWiki) are tested. The details of these datasets

are shown in Table I and II. T40D500K and T10020M are

obtained from the IBM Market-Basket Synthetic Data Gen-

erator. Webdocs5X is generated by duplicating transactions

of Webdocs 5 times.

The ENWiki is the English Wikipedia downloaded in

December 2014. We have removed all paragraphs containing

non-roman characters and all MediaWiki markups. The re-

sulting dataset contains about 1,461,281 articles, 11,507,383

sentences (defined as transactions) with 6,322,092 unique

words. We construct a dictionary by ranking the words

using their frequencies. Capital letters are all converted into

lower case and numbers are replace with the special ”NUM”

word. In natural language processing field the idea that some

aspects of word semantic meaning can be induced from

patterns of word co-occurrence is becoming increasingly

popular. The association rule mining provides a suite of

efficient tools for computing such co-occurred word clusters.

D. Apriori-AP vs. Apriori-CPU

Figure 5 shows the performance comparison between our

Apriori-AP solution and the classic Apriori-CPU implemen-

tation on three real-world datasets. The computation time

of Apriori-CPU grows exponentially as minimum support

number decreases for three datasets, while Apriori-AP shows

much less computation time and much slower growth of

computation time as minimum support number decreases. As

a result, the speedup of Apriori-AP over Apriori-CPU grows

as support decreases and achieves up to 129X speedup. The

drop in the speedup at the relative minimum support of 0.1

for Webdocs is caused by switching from 8-bit encoding to

16-bit encoding, which doubles the size of the input stream.

The speedup increases again after this point. For small and

dense datasets like Pumsb, data processing time is relatively

low, while the symbol replacement takes up to 80% of the

total computation time. Though the symbol replacement is

a light-weight reconfiguration, frequent symbol replacement

decreases the AP hardware utilization. Also the increasing

CPU time of Apriori-AP on small and dense datasets leads

to a smaller relative utilization of the AP when the minimum

support decreases. In contrast, larger datasets like Accidents

and Webdocs spend relatively more time on data processing,

and the portion of data processing time goes up as the

support decreases. This analysis indicates our Apriori-AP

solution exhibits superior relative performance for large

datasets and small minimum support values.

Figure 6 shows similar trends of Apriori-AP speedup over

Apriori-CPU on three synthetic benchmarks. Up to 94X

speedups are achieved for the T100D20M dataset. In all

above the cases, the difference between the counting speedup

and overall speedup is due to the computation on the host

CPU. This difference will decrease as the total computation

time increases for large datasets.

The symbol replacement latency can be quite important

for small and dense datasets that require multiple passes in

each Apriori iteration, but this latency may be significantly

reduced in future generations of the AP. Figure 7 shows

Table I: Real-World Datasets

Name Trans# Aver. Len. Item# Size (MB)

Pumsb 49046 74 2113 16
Accidents 340183 33.8 468 34
Webdocs 1692082 177.2 5267656 1434
ENWiki 11507383 70.3 6322092 2997.5

Aver. Len. – Average number of items per transaction.

Table II: Synthetic Datasets

Name Trans# Aver. Len. Item# ALMP Size (MB)

T40D500K 500K 40 100 15 49
T100D20M 20M 100 200 25 6348.8
Webdocs5X 8460410 177.2 5267656 N/A 7168

Aver. Len. – Average number of items per transaction.
ALMP – Average length of maximal pattern
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Figure 5: The performance results of Apriori-AP on three

real-world benchmarks. DP time, SR time and CPU time

represent the data process time on AP, symbol replacement

time on AP and CPU time respectively. Webdocs switches

to 16-bit encoding when relative minimum support is less

then 0.1. 8-bit encoding is applied in other cases.
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Figure 6: The speedup of Apriori-AP over Apriori-CPU on

three synthetic benchmarks
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Figure 7: The impact of symbol replacement time on

Apriori-AP performance for Pumsb

how symbol replacement time affects the total Apriori-

AP computation time. A reduction of 90% in the symbol

replacement time leads to 2.3X-3.4X speedups of the total

computation time. The reduction of symbol replacement

latency will not affect the performance behavior of Apriori-

AP for large datasets, since data processing dominates the

total computation time.

E. Apriori vs. Eclat

Equivalent Class Clustering (Eclat) is another algorithm

based on Downward-closure. Eclat uses a vertical repre-

sentation of transactions and depth-first-search strategy to

minimize memory usage. Zhang et al. [6] proposed a hy-

brid depth-first/breadth-first search scheme to expose more

parallelism for both multi-thread and GPU versions of Eclat.

However, the trade-off between parallelism and memory

usage still exists. For large datasets, the finite memory (main

or GPU global memory) will become a limiting factor for

performance, and for very large datasets, the algorithm fails.

While there is a parameter which can tune the trade-off

between parallelism and memory occupancy, we simply

use the default setting of this parameter [6] for better

performance.

Figure 8 shows the speedups that the Eclat sequential
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Figure 8: The performance comparison of CPU sequential

Apriori and Eclat

algorithm achieved with respect to sequential Apriori-CPU.

Though Eclat has 8X performance advantage in average

cases, the vertical bitset representation become less efficient

for sparse and large dataset (high #trans and #freq item

ratio). This situation becomes worse as the support num-

ber decreases. The Apriori-CPU implementation usually

achieves worse performance than Eclat, though the per-

formance boost of counting operation makes Apriori-AP a

competitive solution to parallelized Eclat.

Three factors make Eclat a poor fit for the AP, though it

has better performance on CPU:

1) Eclat requires bit-level operations, but the AP works

on byte-level symbols

2) Eclat generates new vertical representations of trans-

actions for each new itemset candidate, while dynam-

ically changing the values in the input stream is not

efficient using the AP

3) Even the hybrid search strategy cannot expose enough

parallelism to make full use of the AP chips

Figure 9 and 10 show the performance comparison be-

tween Apriori-AP (45nm for current generation of AP),

and sequential, multi-core, and GPU versions of Eclat.

Generally, Apriori-AP shows better performance than se-

quential and multi-core versions of Eclat. The GPU version

of Eclat shows better performance in Pumsb, Accidents

and Webdocs when the minimum support number is small.

However, because of the constraint of GPU global memory,

Eclat-1G fails at small support numbers for three large

datasets - ENWiki, T100D20M and Webdocs5X. ENWiki,

as a typical sparse dataset, causes inefficient storage of bitset

representation in Eclat and leads to early failure of Eclat-

GPU and up to 49X speedup of Apriori-AP over Eclat-6C.

In other benchmarks, Apriori-AP shows up to 7.5X speedup

over Eclat-6C and 3.6X speedup over Eclat-1G. This figure

also indicates that the performance advantage of Apriori-

AP over Eclat GPU/multi-core increases as the size of the

dataset grows.

F. Normalizing for technology

The AP D480 chip is based on 45nm technology, while

the Intel CPU Xeon E5-1650 and Nvidia Kepler K20C on

which we test Eclat are based on 32nm and 28nm tech-

nologies respectively. To compare the different architectures

in the same semiconductor technology mode, we show the

performance of technology projections on 32nm and 28nm

technologies in Figure 9 and 10 assuming linear scaling for

clock frequency and square scaling for capacity [20]. The

technology normalized performance of Apriori-AP shows

better performance than multi-core and GPU versions of

Eclat in almost all of the ranges of support that we inves-

tigated for all datasets, with the exception of small support

for Pumsb and T100D20M. Apriori-AP achieves up to 112X

speedup over Eclat-6C and 6.3X speedup over Eclat-1G.

G. Data size

The above results indicate that the size of the dataset

could be a limiting factor for the parallel Eclat algorithms.

By varying the number of transactions but keeping other

parameters fixed, we studied the behavior of Apriori-AP

and Eclat as the size of the dataset increases (Figure 11).

For T100, the datasets with different sizes are obtained

by the IBM synthetic data generator. For Webdocs, the

different data sizes are obtained by randomly sampling the

transactions or by concatenating duplicates of the whole

dataset. In the tested cases, the GPU version of Eclat

fails in the range from 2GB to 4GB because of the finite

GPU global memory. Comparing the results using different

support numbers on the same dataset, it is apparent that

the smaller support number causes Eclat-1G to fail at a

smaller dataset. This failure is caused by the fact that

the ARM with a smaller support will keep more items

and transactions in the data preprocessing stage. While not

shown in this figure, it is reasonable to predict that the multi-

core Eclat implementation would fail when the available

physical memory is exhausted. However, Apriori-AP will

still work well on much larger datasets, assuming the data

is streamed in from the hard drive (assuming the hard drive

bandwidth is not a bottleneck).

VII. CONCLUSIONS AND THE FUTURE WORK

We present a hardware-accelerated ARM solution using

Micron’s new AP architecture. Our proposed solution in-

cludes a novel automaton design for matching and counting

frequent itemsets for ARM. The multiple-entry NFA based

design was proposed to handle variable-size itemsets (ME-

NFA-VSI) and avoid routing reconfiguration. The whole

design makes full usage of the massive parallelism of the AP

and can match and count up to 18, 432 itemsets in parallel on

an AP D480 48-core board. When compared with the Apri-

ori-based single-core CPU implementation, the proposed

solution shows up to 129X speedup in our experimental
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Figure 9: Performance comparison among Apriori-AP, Eclat-

1C, Eclat-6C and Eclat-1G with technology normalization

on three small datasets

results on seven real-world and synthetic datasets. This AP-

accelerated solution also outperforms the multicore-based

and GPU-based implementations of Eclat ARM, a more

efficient algorithm, with up to 49X speedups, especially on

large datasets. When performing technology projections on

future generations of the AP, our results suggest even better

speedups relative to the equivalent-generation of CPUs and

GPUs. Furthermore, by varying the size of the datasets from

small to very large, our results demonstrate the memory

constraint of parallel Eclat ARM, particularly for GPU
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Figure 10: Performance comparison among Apriori-AP,

Eclat-1C, Eclat-6C and Eclat-1G with technology normal-

ization on four large datasets
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Figure 11: Performance prediction with technology normal-

ization as a function of input size

implementation. In contrast, the capability of our AP ARM

solution scales nicely with the data size, since the AP was

designed for processing streaming data.

With the challenge of the “big data” era, a number of other

complex pattern mining tasks such as frequent sequential

pattern mining and frequent episode mining, have attracted

great interests in both academia and industry. We plan to

extend the proposed CPU-AP infrastructure and automaton

designs to address more complex pattern-mining problems.
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Integrated Circuits, 2nd ed. Pearson Education, 2003.


