Thermal-Effective Clustered Microarchitectures

P. Chaparro, J. González and A. González

Intel Labs - UPC
Motivation

• Removing heat is expensive
• Design point is set for worst case temperatures
 - Expensive thermal solution guarantees peak performance
 • Usually temperatures are lower
 - A localized hotspot may...
 • trigger global emergency mechanisms: But it could be avoided by focusing only on that hotspot
 • not be detected: Sensors covering wider areas

• Clustered architectures give new opportunities for temperature reduction
 - Peak temperature 33%
 - Average temperature 12%
Overview

- Introduction
- Processor Architecture
- Simulation Infrastructure
- Thermal Analysis of Clustered Architectures
- Cluster Hopping
- Conclusions
Introduction

- Clustering opens new opportunities for temperature reduction
 - Distribution of resources
 • Activity distribution
 - Hopping schemes
 - Layout flexibility
 • Trade off unit location vs. wire delay
 - Resource grouping into clusters
 • Voltage and clock domains
 • Leakage control
 • V_{dd} gating
Processor Architecture

- **Large frontend**
 - 32Kuop trace cache
 - dispatch 8 uops/cycle
- **2MB L2 cache**
- **Highly OOO**
 - 80-entry issue queue
 - 384-entry MOB
 - 4 int + 3 fp + 4 ld/st
 - 544+544 physical regs
 - 64KB, 2-way L1
Processor Architecture

Diagram showing components and their labels:

- ROB
- ITLB
- RAT
- BP
- TC
- FPRF
- IRF
- FPS
- IS
- DTLB
- DL1
- MS/MOB
- UL2

Intel logo in the top right corner.
Processor Architecture

- Dispatch Logic
- Trace Cache
- Unified Level 2 Cache
- Memory Bus
- Disambiguation Bus
- Backend 1
- Backend N
- Point to Point Link
Processor Architecture

Bicluster

Each cluster has half the resources of the original monolithic backend
Quadcluster
Each cluster has a quarter of the resources of the original monolithic backend.
Simulation Infrastructure

- Computes dynamically the temperature of selected functional blocks (emulates thermal sensors)
- Integrated in a microarchitectural simulator
Simulation Infrastructure

- Ambient
- Heat sink
- Heat spreader
- Die
- R-C pairs

<table>
<thead>
<tr>
<th>Electrical</th>
<th>Thermal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltage</td>
<td>Temperature</td>
</tr>
<tr>
<td>(V)</td>
<td>(K)</td>
</tr>
<tr>
<td>Current</td>
<td>Power</td>
</tr>
<tr>
<td>(A)</td>
<td>(W)</td>
</tr>
<tr>
<td>Resistance</td>
<td>Resistance</td>
</tr>
<tr>
<td>(V/A)</td>
<td>(K/W)</td>
</tr>
<tr>
<td>Capacity</td>
<td>Capacity</td>
</tr>
<tr>
<td>(J/V)</td>
<td>(J/K)</td>
</tr>
<tr>
<td>Time constant τ = R · C</td>
<td>(s)</td>
</tr>
</tbody>
</table>
Thermal Analysis of Clustered Architectures

- **Temperature metrics**
 - `AbsMax`
 - Maximum sensed temperature
 - `Average`
 - Average temperature of the chip area over time
 - `AverageMax`
 - Average temperature over time of the maximum sensed temperature
Thermal Analysis of Clustered Architectures

Average temperature reduction for 16 SPEC
Cluster Hopping

- Based on activity migration [Heo, ISLPED 03]
 - V_{dd} gate a subset of clusters
 - Rotate clusters to spread activity along time
 - Gated clusters cannot provide any register value
 - Before gating cluster must be emptied
 - Cache/DTLB contents are lost
 - Proactive and/or reactive behavior
 - Proactive: Per interval basis
 - Reactive: On thermal events
Cluster Hopping

HOP-3

HOP-2
Cluster Hopping

![Chart showing Cluster Hopping metrics for different hops and various metrics like AbsMax, Average, AverageMax, IPC degradation, Slowdown, and Processor slowdown. The chart compares Backends (in blue), UL2 (in purple), Frontend (in green), and Processor (in yellow) performance.]
Conclusions

• The analyzed bi-cluster architecture is increasing temperature: Clustering must be applied smartly

• The quad-cluster architecture analyzed is effective reducing temperature:
 - Reduces processor peak temperature 33%
 - Reduces 12% average temperature
 - IPC penalty of 14%
 - Ignored other benefits of clustering for this study

• Improving the quad-cluster architecture with a hopping scheme (HOP-3):
 - Peak temperature is reduced 37%
 - Average temperature of the processor 14%
 - Extra penalty of 3%