Relational Database Design

- To generate a set of relation schemas that allows
 - to store information without unnecessary redundancy
 - to retrieve desired information easily
- Approach
 - design schema in appropriate normal form
- How to determine whether a schema is in normal form?
 - functional dependency: a collection of constraints
 - a key notion in relational database design
- Undesirable properties of bad design
 1) repetition of information, resulting in wasted space and complicated updates
 2) inability to represent certain information: introduction of null values
 3) loss of information

Undesirable features of poor design
- properties of information repetition and null values suggest decomposition of relation schema
- property of information loss implies lossy-join decomposition
- Major concern in DB design
 - how to specify constraints on the database and how to obtain lossless-join decomposition that avoids the undesirable properties above

Loss of Information

Borrow = (B-name, Loan#, C-name, Amount)
Amt = ΠAmount, C-name (Borrow)
Loan = ΠB-name, Loan#, Amount (Borrow)

Amt | Loan contains more tuples that the original relation
→ ΠB-name (σC-name=Jones (Amt | Loan)) may introduce a wrong answer

More tuples in Amt | Loan implies less information
→ lossy-join decomposition

Reason for such anomaly
- Amount does not uniquely relate B-name and C-name
- customers may have loans in the same amount, but not necessarily at the same branch
- uniqueness is critical: notion of key

Functional dependency is a generalization of the notion of key (uniqueness)

Functional Dependency

For a relation scheme R(A₁, ..., Aₙ),
let X and Y be subsets of attributes A₁, ..., Aₙ.
X functionally determines Y (X → Y) if relation r(R) represents the current instance of the schema R, and it is not possible to have two tuples in r that agree in components of all attributes X and disagree on some attributes in Y.

- Properties
 - if X is a key, then X → Y for any possible set of attributes of R
 - FD allows to express constraints that cannot be expressed just using keys

<ex> Lending (B-name, Assets, B-city, Loan#, C-name, Amount)
B-name is not a superkey, since a branch may have many loans to many customers, but we can express the dependency B-name → B-city
Functional Dependency

<table>
<thead>
<tr>
<th>Assign</th>
<th>Pilot</th>
<th>Flight</th>
<th>Date</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>112</td>
<td>3/11</td>
<td>1325</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>301</td>
<td>3/10</td>
<td>0600</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>105</td>
<td>3/11</td>
<td>1325</td>
<td></td>
</tr>
</tbody>
</table>

- Flight functionally determines Time
 Flight → Time
- For any given Pilot, Date, and Time, there is only one flight
 Pilot, Date, Time → Flight

Formal definition
A set of attributes X functionally determines the set Y if
\[t_1(X) = t_2(X) \] implies \[t_1(Y) = t_2(Y) \]
or, equivalently
\[t_1(Y) \neq t_2(Y) \] implies \[t_1(X) \neq t_2(X) \]
or, equivalently
for all \(X, Y \subseteq R, |\Pi_Y(\sigma_X(r))| \leq 1 \)

Notes on Functional Dependency

- FD is a statement about the universe as we understand it.
- FD is a semantic integrity constraints, which must hold
 for all the tuples in the relation
- all relations must satisfy all FDs;
 otherwise they are not correct
- It is not true to say
 “Since X functionally determines Y, if we know X, we know Y.”
 Or, “If X → Y, then X identifies Y.”
- Let R be a schema, then X → R iff X is a superkey of R
- Some FDs are trivial
 \[A → A \]
 \[X → Y \] if \(Y \subseteq X \)

Use of Functional Dependency

- Legality test
 - check whether the relations are legal under a given
 set of FDs
 - if r is legal under a given set of FDs F,
 we say r satisfies F.
- Constraints specification
 - express constraints on the set of legal relations
 - rules to be used in database design

Logical Implications of Functional Dependency

- Not enough to consider only the given set of FDs
 - need to consider all FDs that hold
 - for a given set of FDs F, certain other FDs also hold:
 they are logically implied by F
 <ex> R(A, B, C)
 FD: \{ A → B, B → C \}
 \[A → B ∧ B → C → A → C \]
 <Proof>
 If \(t_1(A) = t_2(A) \), then \(t_1(B) = t_2(B) \) by \(A → B \).
 Since \(B → C \), \(t_1(C) = t_2(C) \). Therefore if \(t_1(A) = t_2(A) \),
 then \(t_1(C) = t_2(C) \). Hence \(A → C \).
- Closure of F (\(F^+ \))
 - set of all FDs logically implied by F
 - if \(F = F^+ \), F is called a full family of dependencies
 - how to compute \(F^+ ? \) use inference rules
Inference Rules

- A means of inferring the existence of FD from the given set
- Completeness and soundness
 - completeness: given F, the rules allow us to determine all dependencies in F⁺
 - soundness: we cannot generate any FD not in F⁺

<ex>
R = (A, B, C, D) F = {A → B, B → C}
F⁺ = {A → B, B → C, A → C}
A → D? If we get it by the rules, they are not sound.
If we cannot get A → C by the rules, they are not complete.

Are there complete and sound inference rules to compute F⁺?

Armstrong’s Axioms

(1) reflexivity rule
 if Y ⊆ X, then X → Y holds (trivial dependency)
(2) augmentation rule
 if X → Y, then XZ → YZ
(3) transitivity rule
 if X → Y and Y → Z, then X → Z

Although these three rules are complete, there are additional three rules to compute F⁺ directly
(4) additivity (union) rule
 if X → Y and X → Z, then X → YZ
(5) projectivity (decomposition) rule
 if X → YZ, then X → Y and X → Z
(6) pseudo-transitivity rule
 if X → Y and WY → Z, then WX → Z

Additional Rules

- Additional rules can be derived from the original rules
 union rule: 1. X → Y given
 2. X → XY augment X
 3. X → Z given
 4. XY → YZ augment Y
 5. X → YZ transitivity 2 & 4
 decomposition: 1. X → YZ given
 2. YZ → Z reflexivity
 3. X → Z transitivity 1 & 2
 pseudo-transitivity: 1. X → Y given
 2. WX → WY augment W
 3. WY → Z given
 4. WX → Z transitivity 2 & 3

- Theorem: Armstrong’s axioms are sound and complete

Computing Closure

Let X be a set of attributes, then X⁺ is the set of all attributes functionally determined by X under a set of FDs F.

<Algorithm>
Input: F and X
Output: X⁺ (the closure of X with respect to F)

Compute a sequence of sets of attributes X⁰, X¹, ...
by the following rule:
(1) X⁰ = X
(2) X⁺ = X⁺ ∪ Z
 if Y → Z ∈ F and Y ⊆ X⁺
(3) stop when X⁺ = X⁺

<ex> {A → C, B → C, C → D, DE → C, CE → A}

1. X = AD
 X⁰ = {AD} X⁰ = {BC}
 X¹ = {AD} ∪ {C} = {ACD} X¹ = {BC} ∪ {CD} = {BCD}
 X² = {ACD} = X¹ X² = {BCD} = X¹
 stop
 stop
Relation Decomposition

- One of the properties of bad design suggests to decompose a relation into smaller relations.
 - must achieve lossless-join decomposition (non-additive join)

\[
\text{ex}: R = (A, B, C) \quad F = \{A \rightarrow B\}
\]

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>a1</td>
<td>b1</td>
<td>c1</td>
</tr>
<tr>
<td>a2</td>
<td>b1</td>
<td>c2</td>
</tr>
</tbody>
</table>

Decomposition 1:

\[
\begin{align*}
 r_1 & \rightarrow A \quad B \\
 r_2 & \rightarrow B \quad C \\
 r_1 \cdot r_2 & \rightarrow A \quad B \quad C
\end{align*}
\]

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>a1</td>
<td>b1</td>
<td>c1</td>
</tr>
<tr>
<td>a2</td>
<td>b1</td>
<td>c2</td>
</tr>
</tbody>
</table>

Decomposition 2:

\[
\begin{align*}
 r_1 & \rightarrow A \quad B \\
 r_2 & \rightarrow A \quad C \\
 r_1 \cdot r_2 & \rightarrow A \quad B \quad C
\end{align*}
\]

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>a1</td>
<td>b1</td>
<td>c1</td>
</tr>
<tr>
<td>a2</td>
<td>b1</td>
<td>c2</td>
</tr>
</tbody>
</table>

Lossless Join

If \(R \) is a relation schema decomposed into \(R_1, \ldots, R_K \), and \(F \) is a set of FDs, the decomposition is called a **lossless join** with respect to \(F \), if for every relation \(r(R) \) satisfying \(F \)

\[
r = \prod_{i=1}^{K} (r_i)
\]

- \(r \) is the natural join of its projection onto \(R_i \)
- **Recoverability**
 - lossless-join property is necessary if the decomposed relation is to be recovered from its decomposition

Testing lossless join

Let \(R \) be a schema and \(F \) be a set of FDs on \(R \), and \(\alpha = (R_1, R_2) \) be a decomposition of \(R \). Then \(\alpha \) has a lossless join w.r.t. \(F \) iff either

\[
R_1 \cap R_2 \rightarrow R_1 \quad \text{(or)} \quad R_1 \rightarrow R_2
\]

or

\[
R_1 \cap R_2 \rightarrow R_2 \quad \text{(or)} \quad R_2 \rightarrow R_1
\]

where such FD \(F^+ \)

Dependency Preservation Decomposition

- Another desirable property of decomposition
 - each FD specified in \(F \) either appears directly in one of the relations in the decomposition, or be inferred from FDs that appear in some relation
 - Why desirable?
 - when updating the DB, the system must check all the FDs are satisfied
 - for efficiency, violation detection can be done without performing join operation
 - FDs need to be tested by checking one relation
 - A decomposition preserves a set of FDs \(F \), if the union of all FDs in \(\prod_{i=1}^{K} (F_i) \) logically implies all FDs in \(F \)

\[
F_i = \prod_{i=1}^{K} (F_i) \\
F = \bigcup F_i
\]

check if \((F^+)^+ = F^+\)
Testing Dependency Preservation

<ex> \(R = (\text{City, Street, Zip}) \) \(F = \{ \text{CS} \rightarrow Z, Z \rightarrow C \} \)

\(R_1 = (S, Z) \) \(R_2 = (C, Z) \)

(1) lossless join?

\(R_1 \cap R_2 = Z, R_1 \vdash R_2 = C, Z \rightarrow C \) in \(F \)? Yes

(2) dependency preserving?

\(R_1 \): only trivial FD

\(R_2 \): \(Z \rightarrow C \) and trivial FD

\((\Pi_{R_1}(F) \cup \Pi_{R_2}(F))^+ \neq F^+ \)

They do not imply \(\text{CS} \rightarrow Z \).

Hence the decomposition does not preserve dependency.

Algorithm for testing dependency preservation

- given in the textbook, but is not very practical since it requires computing \(F^+ \) that takes exponential time

Minimal Redundancy

- Another desirable property of decomposition

- decomposition should contain as little redundant information as possible

- degrees to which we can achieve the lack of redundancy is represented by several normal forms

- Normalization process

- first introduced by Codd in 1972

- a series of tests to certify whether or not a relation schema belongs to a certain normal form

- Codd proposed three normal forms: 1NF, 2NF, and 3NF

- stronger 3NF was proposed by Boyce and Codd: BCNF

- 1NF, 2NF, 3NF, and BCNF are all based on FDs

- 4NF is based on multivalue dependency

- 5NF is based on join dependency

- domain-key normal form represents an ultimate normal form