Multivalued Dependencies

- FD is a powerful formalism for decomposing schema to eliminate redundancy
- Idea behind FD:
 - the value of a particular attribute uniquely determine the value of some other attribute
 - what if change uniquely determine by restrict?
- FD rules out existence of certain tuples in the relation:
 \[A \rightarrow B \text{ means there's no two tuples } t_1 \text{ and } t_2 \text{ such that } t_1[A]=t_2[A] \land t_1[B] \neq t_2[B] \]

Multivalued dependency (MVD)

- MVD requires other tuples of a certain form be present
- consequence of 1NF that disallows a set of values for an attribute in a tuple
- if two or more multivalued independent attributes in the relation, every value of one attribute must be repeated with every value of other attribute to keep it consistent

MVD

Let \(R \) be a relation schema, and \(X \) and \(Y \) be disjoint subsets of \(R \) (i.e., \(X \subseteq R, Y \subseteq R, X \cap Y = \emptyset \)), and \(Z = R - XY \).

A relation \(r(R) \) satisfies \(X \rightarrow Y \) if for any two tuples \(t_1 \) and \(t_2 \),
\[t_1(X) = t_2(X), \text{ then there exist } t_3 \text{ in } r \text{ such that } t_3(X) = t_1(X), t_3(Y) = t_1(Y), t_3(Z) = t_2(Z). \]

By symmetry, there exist \(t_4 \) in \(r \) such that
\[t_4(X) = t_1(X), t_4(Y) = t_2(Y), t_4(Z) = t_1(Z). \]

Intuition

The MVD \(X \rightarrow Y \) says that the relationship between \(X \) and \(Y \) is independent of the relationship between \(X \) and \(R - Y \).

Notes on MVD

- Trivial MVD
 If MVD \(X \rightarrow Y \) is satisfied by all relations whose schemas include \(X \) and \(Y \), it is called trivial MVD.
 - \(X \rightarrow Y \) is trivial whenever \(Y \subseteq X \) or \(X \cup Y = R \)
- If a relation \(r \) fails to satisfy a given MVD, a relation \(r' \) that satisfies the MVD can be constructed by adding tuples to \(r \)
 - MVD is called "tuple generating dependency"
 - compare it with FD: need to delete tuples to make the relation to satisfy a given FD
- MVD can be used in two ways
 - test relations to determine whether they are legal under a given set of FDs and MVDs
 - specify constraints on a set of relations
Inference Rules for Computing D^+

D: a set of FDs and MVDs

D^+: the closure of D, the set of all FDs and MVDs logically implied by D

Sound and complete rules

1. reflexivity: if $Y \subseteq X$ then $X \rightarrow Y$
2. augmentation: if $X \rightarrow Y$ then $WX \rightarrow Y$
3. transitivity: if $X \rightarrow Y$ and $Y \rightarrow Z$ then $X \rightarrow Z$
4. complementation: if $X \rightarrow Y$ then $X \rightarrow R$ (or $X \rightarrow R$ _and_ $Y \rightarrow Z$)
5. MV augmentation: if $X \rightarrow Y$ and $W \subseteq R$, $V \subseteq W$, then $WX \rightarrow VY$
6. MV transitivity: if $X \rightarrow Y$ and $Y \rightarrow Z$ then $X \rightarrow Z$ (or $X \rightarrow Z$)
7. replication: if $X \rightarrow Y$ then $X \rightarrow Y$
8. coalescence: if $X \rightarrow Y$ and $Z \subseteq Y$, $W \subseteq R$, $W \cap Y = \emptyset$, $W \rightarrow Z$, then $X \rightarrow Z$

Note: The first three rules are Armstrong’s axioms.

Fourth Normal Form

A relation scheme R is in 4NF w.r.t. D, if for every non-trivial MVD $X \rightarrow Y$ in D^+, X is a superkey for R

- $4NF$ and $BCNF$
 - $4NF$ is different from $BCNF$ only in the use of D (FD + MVD) instead of F (FDs)
 - every $4NF$ schemes are also in $BCNF$, Why?
 By replication rule, $X \rightarrow Y$ implies $X \rightarrow Y$.
 If R is not in $BCNF$, there exists a non-trivial FD $X \rightarrow Y$
 where X is not a superkey --- R cannot be in $4NF$

<ex> Employee (E-name, P-name, D-name) is not in $4NF$, since E-name → P-name but E-name is not a key.
Decompose into Emp-proj (E-n, P-n) and Emp-dep (E-n, D-n)

<ex> Borrow (Loan#, C-name, Street, C-city) is in $BCNF$, but not in $4NF$, because C-name→Loan# is a non-trivial MVD, where C-name is not a key in this schema.
R$_1$=(C-name, Loan#), R$_2$=(C-name, Street, C-city)

Benefits of Fourth Normal Form

- Reduced number of tuples
- No anomalies for insert/delete/update

<ex> Employee (E-name, P-name, D-name)

<table>
<thead>
<tr>
<th>E-name</th>
<th>P-name</th>
<th>D-name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Smith</td>
<td>X</td>
<td>John</td>
</tr>
<tr>
<td>Smith</td>
<td>Y</td>
<td>Ann</td>
</tr>
<tr>
<td>Smith</td>
<td>X</td>
<td>Ann</td>
</tr>
<tr>
<td>Smith</td>
<td>Y</td>
<td>John</td>
</tr>
<tr>
<td>Brown</td>
<td>W</td>
<td>Jim</td>
</tr>
<tr>
<td>Brown</td>
<td>Y</td>
<td>Jim</td>
</tr>
<tr>
<td>Brown</td>
<td>W</td>
<td>Bob</td>
</tr>
<tr>
<td>Brown</td>
<td>X</td>
<td>Bob</td>
</tr>
<tr>
<td>Brown</td>
<td>Y</td>
<td>Bob</td>
</tr>
</tbody>
</table>

Emp-proj (E-name, P-name) Emp-dep (E-name, D-name)

<table>
<thead>
<tr>
<th>E-name</th>
<th>P-name</th>
<th>E-name</th>
<th>D-name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Smith</td>
<td>X</td>
<td>Smith</td>
<td>John</td>
</tr>
<tr>
<td>Smith</td>
<td>Y</td>
<td>Smith</td>
<td>Ann</td>
</tr>
<tr>
<td>Brown</td>
<td>W</td>
<td>Brown</td>
<td>Jim</td>
</tr>
<tr>
<td>Brown</td>
<td>X</td>
<td>Brown</td>
<td>Bob</td>
</tr>
<tr>
<td>Brown</td>
<td>Y</td>
<td>Brown</td>
<td>Bob</td>
</tr>
</tbody>
</table>

Lossless Join Decomposition

- The decomposition of R into R_1 and R_2 is a lossless join decomposition iff one of the following MVDs hold in D^+
 $R_1 \cap R_2 \rightarrow R_1$ (or $R_1 \rightarrow R_2$)
 $R_1 \cap R_2 \rightarrow R_2$ (or $R_2 \rightarrow R_1$)
- whenever R is decomposed into $R_1=(X \cup Y)$ and $R_2=(R \setminus Y)$
 based on an MVD $X \rightarrow Y$ that holds in R,
 it is a lossless join decomposition

- Algorithm
 set D=[R]
 while there is a schema Q in D that is not in $4NF$ do begin
 choose Q in D not in $4NF$
 find a non-trivial MVD $X \rightarrow Y$ in Q
 that violates $4NF$
 replace Q in D by $(Q \setminus Y)$ and $(X \cup Y)$
 end.
- Dependency preservation is not guaranteed
4NF

- Goal of database design
 - 4NF (BCNF if there is no MVD)
 - dependency preservation
 - lossless join decomposition

- If cannot satisfy all these, which one to compromise?
 The first one: 4NF > BCNF > 3NF to ensure other two

- BCNF and 4NF
 - although they are well known, they are not widely accepted as 1NF, 2NF, and 3NF, since dependency preservation is not guaranteed

- Comparing FD and MVD
 - if we have \((a_1 b_1 c_1 d_1) \in r\) and \((a_1 b_2 c_2 d_2) \in r\)
 \(A \rightarrow B\) implies \(b_1 = b_2\)
 \(A \rightarrow\rightarrow B\) implies \((a_1 b_1 c_2 d_2) \in r\)