Object-Oriented Data Model

Why introduced?
- characteristics of traditional database applications
 1. large # of similarly structured data with same size
 2. consists of fixed-length records (usually short)
 3. atomic fields: 1NF
 4. short transactions: execution time in the range of sec
 5. static conceptual schemas

New applications
 1. complex objects and complex internal structures
 2. behavioral data: distinct objects respond differently to the same command
 3. meta knowledge: rules in addition to tuples
 4. long-lived transactions, human interaction possible
 5. CAD, CAE, CAM, multimedia DB, etc

Notions in Object-Oriented Data Model

- An adaptation of OO programming paradigms to databases
- Encapsulating data and code in objects
 - interface between objects: message to invoke method
- Class
 - a means of grouping all objects that share the same set of attributes and methods
 - an object belongs to only one class as an instance
 - enhance the system integrity by type checking
- Class hierarchy and inheritance
 - allow deriving a new class from existing classes
 - subclass inherits all attributes and methods of the superclass
 - single inheritance: one superclass
 - multiple inheritance: more than one superclass
 - ambiguity: potential name conflicts among classes