(1) (T/F) The amount of time it takes to finish all the jobs for a given set of jobs can be different by using different scheduling algorithms (assuming that the context switching overhead is zero).

(2) (T/F) A starvation can occur when the system uses FIFO scheduling. Assume that all processes are of finite length.

(3) (T/F) FIFO scheduling is unfair compared to RR, and the average response time using FIFO is always longer compared to using RR.

(4) Four processes A through D, arrive at a computer system at 0, 1, 2, and 3, respectively. They have estimated execution times of 8, 4, 9, and 5. Their priorities are 2, 4, 3, and 1, respectively, with 1 being the highest priority. The priorities are used only for priority scheduling (i.e., they are ignored in other scheduling algorithms). All jobs are completely CPU bound. The OS does not know when a process will arrive, until it arrives. For each of the following scheduling algorithms, determine the average response time. Ignore context switching overhead.

 (a) round robin with time slice = 1

 (b) priority scheduling

 (c) shortest time to completion first

(5) Two periodic processes are ready to run at time 0: P1(2,1) and P2(5,2.5). The system uses EDF (earliest deadline first) scheduling. Draw a timeline for each process to show when they are running and when they are waiting, assuming that there is no context switching overhead.