
Scheduling 1

1



Changelog

Changes made in this version not seen in first lecture:
10 September: RR varying quantum examples: fix calculation of
response/wait time on Q=2
10 September: add priority scheduling and preemption slide
10 September: backup slides with pipe() exercises — see end of slide
deck

1



Unix API summary

spawn and wait for program: fork (copy), then
in child: setup, then execv, etc. (replace copy)
in parent: waitpid

files: open, read and/or write, close
one interface for regular files, pipes, network, devices, …

file descriptors are indices into per-process array
index 0, 1, 2 = stdin, stdout, stderr
dup2 — assign one index to another
close — deallocate index

redirection/pipelines
open() or pipe() to create new file descriptors
dup2 in child to assign file descriptor to index 0, 1

2



xv6: process table

struct {
struct spinlock lock;
struct proc proc[NPROC]

} ptable;

fixed size array of all processes

lock to keep more than one thing from accessing it at once
rule: don’t change a process’s state (RUNNING, etc.) without
‘acquiring’ lock

3



xv6: allocating a struct proc

acquire(&ptable.lock);

for(p = ptable.proc; p < &ptable.proc[NPROC]; p++)
if(p−>state == UNUSED)

goto found;

release(&ptable.lock);

just search for PCB with “UNUSED” state

not found? fork fails

if found — allocate memory, etc.

4



xv6: creating the first process

// Set up first user process.
void
userinit(void)
{
struct proc *p;
extern char _binary_initcode_start[], _binary_initcode_size[];

p = allocproc();

initproc = p;
...
inituvm(p−>pgdir, _binary_initcode_start,

(int)_binary_initcode_size);
...
p−>tf−>esp = PGSIZE;
p−>tf−>eip = 0; // beginning of initcode.S
...
p−>state = RUNNABLE;

struct proc with initial kernel stack
setup to return from swtch, then from exception

load into user memory
hard-coded “initial program”
calls execv() of /init

modify user registers
to start at address 0

set initial stack pointerset process as runnable

5



xv6: creating the first process

// Set up first user process.
void
userinit(void)
{
struct proc *p;
extern char _binary_initcode_start[], _binary_initcode_size[];

p = allocproc();

initproc = p;
...
inituvm(p−>pgdir, _binary_initcode_start,

(int)_binary_initcode_size);
...
p−>tf−>esp = PGSIZE;
p−>tf−>eip = 0; // beginning of initcode.S
...
p−>state = RUNNABLE;

struct proc with initial kernel stack
setup to return from swtch, then from exception

load into user memory
hard-coded “initial program”
calls execv() of /init

modify user registers
to start at address 0

set initial stack pointerset process as runnable

5



xv6: creating the first process

// Set up first user process.
void
userinit(void)
{
struct proc *p;
extern char _binary_initcode_start[], _binary_initcode_size[];

p = allocproc();

initproc = p;
...
inituvm(p−>pgdir, _binary_initcode_start,

(int)_binary_initcode_size);
...
p−>tf−>esp = PGSIZE;
p−>tf−>eip = 0; // beginning of initcode.S
...
p−>state = RUNNABLE;

struct proc with initial kernel stack
setup to return from swtch, then from exception

load into user memory
hard-coded “initial program”
calls execv() of /init

modify user registers
to start at address 0

set initial stack pointerset process as runnable

5



xv6: creating the first process

// Set up first user process.
void
userinit(void)
{
struct proc *p;
extern char _binary_initcode_start[], _binary_initcode_size[];

p = allocproc();

initproc = p;
...
inituvm(p−>pgdir, _binary_initcode_start,

(int)_binary_initcode_size);
...
p−>tf−>esp = PGSIZE;
p−>tf−>eip = 0; // beginning of initcode.S
...
p−>state = RUNNABLE;

struct proc with initial kernel stack
setup to return from swtch, then from exception

load into user memory
hard-coded “initial program”
calls execv() of /init

modify user registers
to start at address 0

set initial stack pointer

set process as runnable

5



xv6: creating the first process

// Set up first user process.
void
userinit(void)
{
struct proc *p;
extern char _binary_initcode_start[], _binary_initcode_size[];

p = allocproc();

initproc = p;
...
inituvm(p−>pgdir, _binary_initcode_start,

(int)_binary_initcode_size);
...
p−>tf−>esp = PGSIZE;
p−>tf−>eip = 0; // beginning of initcode.S
...
p−>state = RUNNABLE;

struct proc with initial kernel stack
setup to return from swtch, then from exception

load into user memory
hard-coded “initial program”
calls execv() of /init

modify user registers
to start at address 0

set initial stack pointer

set process as runnable

5



threads versus processes

for now — each process has one thread

Anderson-Dahlin talks about thread scheduling

thread = part that gets run on CPU
saved register values (including own stack pointer)
save program counter

rest of process
address space
open files
current working directory
…

6



xv6 processes versus threads

xv6: one thread per process
so part of the process control block
is really a thread control block
// Per-process state
struct proc {
uint sz; // Size of process memory (bytes)
pde_t* pgdir; // Page table
char *kstack; // Bottom of kernel stack for this process
enum procstate state; // Process state
int pid; // Process ID
struct proc *parent; // Parent process
struct trapframe *tf; // Trap frame for current syscall
struct context *context; // swtch() here to run process
void *chan; // If non-zero, sleeping on chan
int killed; // If non-zero, have been killed
struct file *ofile[NOFILE]; // Open files
struct inode *cwd; // Current directory
char name[16]; // Process name (debugging)

}; 7



xv6 processes versus threads

xv6: one thread per process
so part of the process control block
is really a thread control block
// Per-process state
struct proc {
uint sz; // Size of process memory (bytes)
pde_t* pgdir; // Page table
char *kstack; // Bottom of kernel stack for this process
enum procstate state; // Process state
int pid; // Process ID
struct proc *parent; // Parent process
struct trapframe *tf; // Trap frame for current syscall
struct context *context; // swtch() here to run process
void *chan; // If non-zero, sleeping on chan
int killed; // If non-zero, have been killed
struct file *ofile[NOFILE]; // Open files
struct inode *cwd; // Current directory
char name[16]; // Process name (debugging)

}; 7



single and multithread processes

thread thread thread thread

files pid …

code data …

stack

registers

PC

…

single-threaded process

files pid …

code data …

stack stack stack

registers registers registers

PC PC PC

… … …

multi-threaded process

8



thread states

new
(xv6: EMBRYO)

ready
(xv6: RUNNABLE)

running
(xv6: RUNNING)

waiting
(xv6: SLEEPING)

finished
(xv6: ZOMBIE)

being created, but not ready
could be put on CPU actually on CPU

need external event to happen

done except for being waited for

9



thread states

new
(xv6: EMBRYO)

ready
(xv6: RUNNABLE)

running
(xv6: RUNNING)

waiting
(xv6: SLEEPING)

finished
(xv6: ZOMBIE)

being created, but not ready

could be put on CPU actually on CPU

need external event to happen

done except for being waited for

9



thread states

new
(xv6: EMBRYO)

ready
(xv6: RUNNABLE)

running
(xv6: RUNNING)

waiting
(xv6: SLEEPING)

finished
(xv6: ZOMBIE)

being created, but not ready

could be put on CPU

actually on CPU

need external event to happen

done except for being waited for

9



thread states

new
(xv6: EMBRYO)

ready
(xv6: RUNNABLE)

running
(xv6: RUNNING)

waiting
(xv6: SLEEPING)

finished
(xv6: ZOMBIE)

being created, but not ready
could be put on CPU

actually on CPU

need external event to happen

done except for being waited for

9



thread states

new
(xv6: EMBRYO)

ready
(xv6: RUNNABLE)

running
(xv6: RUNNING)

waiting
(xv6: SLEEPING)

finished
(xv6: ZOMBIE)

being created, but not ready
could be put on CPU actually on CPU

need external event to happen

done except for being waited for

9



thread states

new
(xv6: EMBRYO)

ready
(xv6: RUNNABLE)

running
(xv6: RUNNING)

waiting
(xv6: SLEEPING)

finished
(xv6: ZOMBIE)

being created, but not ready
could be put on CPU actually on CPU

need external event to happen

done except for being waited for

9



alternative view: queues

ready queue CPU

I/O I/O queues I/O system call

timer/etc. interrupt

wait/… system callwait queues

queues of threadsready queue or run queue
list of running processes

question: what to take off queue first when CPU is free?

10



alternative view: queues

ready queue CPU

I/O I/O queues I/O system call

timer/etc. interrupt

wait/… system callwait queues

queues of threads

ready queue or run queue
list of running processes

question: what to take off queue first when CPU is free?

10



alternative view: queues

ready queue CPU

I/O I/O queues I/O system call

timer/etc. interrupt

wait/… system callwait queues

queues of threads

ready queue or run queue
list of running processes

question: what to take off queue first when CPU is free?
10



on queues in xv6

xv6 doesn’t represent queues explicitly
no queue class/struct

ready queue: process list ignoring non-RUNNABLE entries

I/O queues: process list where SLEEPING, chan = I/O device

real OSs: typically separate list of processes
maybe sorted?

11



scheduling

scheduling = removing process/thread to remove from queue

mostly for the ready queue (pre-CPU)
remove a process and start running it

12



example other scheduling problems

batch job scheduling

e.g. what to run on my supercomputer?

jobs that run for a long time (tens of seconds to days)

can’t easily ‘context switch’ (save job to disk??)

I/O scheduling

what order to read/write things to/from network, hard disk, etc.

13



this lecture

main target: CPU scheduling

…on a system where programs do a lot of I/O

…and other programs use the CPU when they do

…with only a single CPU

many ideas port to other scheduling problems
especially simpler/less specialized policies

14



scheduling policy

scheduling policy = what to remove from queue

15



the xv6 scheduler (1)
void scheduler(void)
struct proc *p;
struct cpu *c = mycpu();
c−>proc = 0;

for(;;){
// Enable interrupts on this processor.
sti();

// Loop over process table looking for process to run.
acquire(&ptable.lock);
for(p = ptable.proc; p < &ptable.proc[NPROC]; p++){

if(p−>state != RUNNABLE)
continue;

... /* switch to process */
}
release(&ptable.lock);

}
}

infinite loop
every iteration: switch to a thread
thread will switch back to us

enable interrupts (sti is the x86 instruction)
…but not acquiring the process table lock
disables interrupts

make sure we’re the only one accessing
the list of processes

also make sure no one runs scheduler while
we’re switching to another process

(more on this idea later)

iterate through all runnable processes
in the order they’re stored in a table

switch to whatever runnable process we find
when it’s done (e.g. timer interrupt)
it switches back, then next loop iteration happens

16



the xv6 scheduler (1)
void scheduler(void)
struct proc *p;
struct cpu *c = mycpu();
c−>proc = 0;

for(;;){
// Enable interrupts on this processor.
sti();

// Loop over process table looking for process to run.
acquire(&ptable.lock);
for(p = ptable.proc; p < &ptable.proc[NPROC]; p++){

if(p−>state != RUNNABLE)
continue;

... /* switch to process */
}
release(&ptable.lock);

}
}

infinite loop
every iteration: switch to a thread
thread will switch back to us

enable interrupts (sti is the x86 instruction)
…but not acquiring the process table lock
disables interrupts

make sure we’re the only one accessing
the list of processes

also make sure no one runs scheduler while
we’re switching to another process

(more on this idea later)

iterate through all runnable processes
in the order they’re stored in a table

switch to whatever runnable process we find
when it’s done (e.g. timer interrupt)
it switches back, then next loop iteration happens

16



the xv6 scheduler (1)
void scheduler(void)
struct proc *p;
struct cpu *c = mycpu();
c−>proc = 0;

for(;;){
// Enable interrupts on this processor.
sti();

// Loop over process table looking for process to run.
acquire(&ptable.lock);
for(p = ptable.proc; p < &ptable.proc[NPROC]; p++){

if(p−>state != RUNNABLE)
continue;

... /* switch to process */
}
release(&ptable.lock);

}
}

infinite loop
every iteration: switch to a thread
thread will switch back to us

enable interrupts (sti is the x86 instruction)
…but not acquiring the process table lock
disables interrupts

make sure we’re the only one accessing
the list of processes

also make sure no one runs scheduler while
we’re switching to another process

(more on this idea later)

iterate through all runnable processes
in the order they’re stored in a table

switch to whatever runnable process we find
when it’s done (e.g. timer interrupt)
it switches back, then next loop iteration happens

16



the xv6 scheduler (1)
void scheduler(void)
struct proc *p;
struct cpu *c = mycpu();
c−>proc = 0;

for(;;){
// Enable interrupts on this processor.
sti();

// Loop over process table looking for process to run.
acquire(&ptable.lock);
for(p = ptable.proc; p < &ptable.proc[NPROC]; p++){

if(p−>state != RUNNABLE)
continue;

... /* switch to process */
}
release(&ptable.lock);

}
}

infinite loop
every iteration: switch to a thread
thread will switch back to us

enable interrupts (sti is the x86 instruction)
…but not acquiring the process table lock
disables interrupts

make sure we’re the only one accessing
the list of processes

also make sure no one runs scheduler while
we’re switching to another process

(more on this idea later)

iterate through all runnable processes
in the order they’re stored in a table

switch to whatever runnable process we find
when it’s done (e.g. timer interrupt)
it switches back, then next loop iteration happens

16



the xv6 scheduler (1)
void scheduler(void)
struct proc *p;
struct cpu *c = mycpu();
c−>proc = 0;

for(;;){
// Enable interrupts on this processor.
sti();

// Loop over process table looking for process to run.
acquire(&ptable.lock);
for(p = ptable.proc; p < &ptable.proc[NPROC]; p++){

if(p−>state != RUNNABLE)
continue;

... /* switch to process */
}
release(&ptable.lock);

}
}

infinite loop
every iteration: switch to a thread
thread will switch back to us

enable interrupts (sti is the x86 instruction)
…but not acquiring the process table lock
disables interrupts

make sure we’re the only one accessing
the list of processes

also make sure no one runs scheduler while
we’re switching to another process

(more on this idea later)

iterate through all runnable processes
in the order they’re stored in a table

switch to whatever runnable process we find
when it’s done (e.g. timer interrupt)
it switches back, then next loop iteration happens

16



the xv6 scheduler (1)
void scheduler(void)
struct proc *p;
struct cpu *c = mycpu();
c−>proc = 0;

for(;;){
// Enable interrupts on this processor.
sti();

// Loop over process table looking for process to run.
acquire(&ptable.lock);
for(p = ptable.proc; p < &ptable.proc[NPROC]; p++){

if(p−>state != RUNNABLE)
continue;

... /* switch to process */
}
release(&ptable.lock);

}
}

infinite loop
every iteration: switch to a thread
thread will switch back to us

enable interrupts (sti is the x86 instruction)
…but not acquiring the process table lock
disables interrupts

make sure we’re the only one accessing
the list of processes

also make sure no one runs scheduler while
we’re switching to another process

(more on this idea later)

iterate through all runnable processes
in the order they’re stored in a table

switch to whatever runnable process we find
when it’s done (e.g. timer interrupt)
it switches back, then next loop iteration happens

16



the xv6 scheduler: the actual switch
/* in scheduler(): */

// Switch to chosen process. It is the process's job
// to release ptable.lock and then reacquire it
// before jumping back to us.
c−>proc = p;
switchuvm(p);
p−>state = RUNNING;

swtch(&(c−>scheduler), p−>context);
switchkvm();

// Process is done running for now.
// It should have changed its p->state before coming back.
c−>proc = 0;

prepare: change address space, change process stateswitch to kernel thread of process
that thread responsible for going back to user mode

after we’ve run the process until it’s done, we end up here

…so, change address space back away from user process

track what process is being run
so we can look it up in interrupt handler

17



the xv6 scheduler: the actual switch
/* in scheduler(): */

// Switch to chosen process. It is the process's job
// to release ptable.lock and then reacquire it
// before jumping back to us.
c−>proc = p;
switchuvm(p);
p−>state = RUNNING;

swtch(&(c−>scheduler), p−>context);
switchkvm();

// Process is done running for now.
// It should have changed its p->state before coming back.
c−>proc = 0;

prepare: change address space, change process state

switch to kernel thread of process
that thread responsible for going back to user mode

after we’ve run the process until it’s done, we end up here

…so, change address space back away from user process

track what process is being run
so we can look it up in interrupt handler

17



the xv6 scheduler: the actual switch
/* in scheduler(): */

// Switch to chosen process. It is the process's job
// to release ptable.lock and then reacquire it
// before jumping back to us.
c−>proc = p;
switchuvm(p);
p−>state = RUNNING;

swtch(&(c−>scheduler), p−>context);
switchkvm();

// Process is done running for now.
// It should have changed its p->state before coming back.
c−>proc = 0;

prepare: change address space, change process state

switch to kernel thread of process
that thread responsible for going back to user mode

after we’ve run the process until it’s done, we end up here

…so, change address space back away from user process

track what process is being run
so we can look it up in interrupt handler

17



the xv6 scheduler: the actual switch
/* in scheduler(): */

// Switch to chosen process. It is the process's job
// to release ptable.lock and then reacquire it
// before jumping back to us.
c−>proc = p;
switchuvm(p);
p−>state = RUNNING;

swtch(&(c−>scheduler), p−>context);
switchkvm();

// Process is done running for now.
// It should have changed its p->state before coming back.
c−>proc = 0;

prepare: change address space, change process stateswitch to kernel thread of process
that thread responsible for going back to user mode

after we’ve run the process until it’s done, we end up here

…so, change address space back away from user process

track what process is being run
so we can look it up in interrupt handler

17



the xv6 scheduler: the actual switch
/* in scheduler(): */

// Switch to chosen process. It is the process's job
// to release ptable.lock and then reacquire it
// before jumping back to us.
c−>proc = p;
switchuvm(p);
p−>state = RUNNING;

swtch(&(c−>scheduler), p−>context);
switchkvm();

// Process is done running for now.
// It should have changed its p->state before coming back.
c−>proc = 0;

prepare: change address space, change process stateswitch to kernel thread of process
that thread responsible for going back to user mode

after we’ve run the process until it’s done, we end up here

…so, change address space back away from user process

track what process is being run
so we can look it up in interrupt handler

17



the xv6 scheduler: on process start
void forkret() {
/* scheduler switches to here after new process starts */
...
release(&ptable.lock);
...

}

scheduler switched with process table locked
need to unlock before running user code
(so other cores, interrupts can use table or
run scheduler)

18



the xv6 scheduler: on process start
void forkret() {
/* scheduler switches to here after new process starts */
...
release(&ptable.lock);
...

}
scheduler switched with process table locked
need to unlock before running user code
(so other cores, interrupts can use table or
run scheduler)

18



the xv6 scheduler: going from/to scheduler
/* function to invoke scheduler;

used by the timer interrupt or yield() syscall */
void yield() {
acquire(&ptable.lock);
myproc()−>state = RUNNABLE;
sched(); // switches to scheduler thread
release(&ptable.lock);

}

process table was locked
(to keep other cores/processes from using it)
unlock it before running user code
otherwise: timer interrupt won’t work

yield: function to call scheduler
called by timer interrupt handler

make sure we’re the only one accessing the process list
before changing our process’s state
and before running scheduler loop

set us as RUNNABLE (was RUNNING)
then switch to infinite loop in scheduler

19



the xv6 scheduler: going from/to scheduler
/* function to invoke scheduler;

used by the timer interrupt or yield() syscall */
void yield() {
acquire(&ptable.lock);
myproc()−>state = RUNNABLE;
sched(); // switches to scheduler thread
release(&ptable.lock);

}

process table was locked
(to keep other cores/processes from using it)
unlock it before running user code
otherwise: timer interrupt won’t work

yield: function to call scheduler
called by timer interrupt handler

make sure we’re the only one accessing the process list
before changing our process’s state
and before running scheduler loop

set us as RUNNABLE (was RUNNING)
then switch to infinite loop in scheduler

19



the xv6 scheduler: going from/to scheduler
/* function to invoke scheduler;

used by the timer interrupt or yield() syscall */
void yield() {
acquire(&ptable.lock);
myproc()−>state = RUNNABLE;
sched(); // switches to scheduler thread
release(&ptable.lock);

}

process table was locked
(to keep other cores/processes from using it)
unlock it before running user code
otherwise: timer interrupt won’t work

yield: function to call scheduler
called by timer interrupt handler

make sure we’re the only one accessing the process list
before changing our process’s state
and before running scheduler loop

set us as RUNNABLE (was RUNNING)
then switch to infinite loop in scheduler

19



the xv6 scheduler: going from/to scheduler
/* function to invoke scheduler;

used by the timer interrupt or yield() syscall */
void yield() {
acquire(&ptable.lock);
myproc()−>state = RUNNABLE;
sched(); // switches to scheduler thread
release(&ptable.lock);

}

process table was locked
(to keep other cores/processes from using it)
unlock it before running user code
otherwise: timer interrupt won’t work

yield: function to call scheduler
called by timer interrupt handler

make sure we’re the only one accessing the process list
before changing our process’s state
and before running scheduler loop

set us as RUNNABLE (was RUNNING)
then switch to infinite loop in scheduler

19



the xv6 scheduler: going from/to scheduler
/* function to invoke scheduler;

used by the timer interrupt or yield() syscall */
void yield() {
acquire(&ptable.lock);
myproc()−>state = RUNNABLE;
sched(); // switches to scheduler thread
release(&ptable.lock);

}

process table was locked
(to keep other cores/processes from using it)
unlock it before running user code
otherwise: timer interrupt won’t work

yield: function to call scheduler
called by timer interrupt handler

make sure we’re the only one accessing the process list
before changing our process’s state
and before running scheduler loop

set us as RUNNABLE (was RUNNING)
then switch to infinite loop in scheduler

19



the xv6 scheduler: entering/leaving for sleep
void sleep(void *chan, struct spinlock *lk) {
...
acquire(&ptable.lock);

...
p−>chan = chan;
p−>state = SLEEPING;

sched();

...
release(&ptable.lock);

...

get exclusive access to process table
before changing our state to sleeping
and before running scheduler loop

set us as SLEEPING (was RUNNING)
use “chan” to remember why
(so others process can wake us up)

…and switch to the scheduler infinite loop

20



the xv6 scheduler: entering/leaving for sleep
void sleep(void *chan, struct spinlock *lk) {
...
acquire(&ptable.lock);

...
p−>chan = chan;
p−>state = SLEEPING;

sched();

...
release(&ptable.lock);

...

get exclusive access to process table
before changing our state to sleeping
and before running scheduler loop

set us as SLEEPING (was RUNNING)
use “chan” to remember why
(so others process can wake us up)

…and switch to the scheduler infinite loop

20



the xv6 scheduler: entering/leaving for sleep
void sleep(void *chan, struct spinlock *lk) {
...
acquire(&ptable.lock);

...
p−>chan = chan;
p−>state = SLEEPING;

sched();

...
release(&ptable.lock);

...

get exclusive access to process table
before changing our state to sleeping
and before running scheduler loop

set us as SLEEPING (was RUNNING)
use “chan” to remember why
(so others process can wake us up)

…and switch to the scheduler infinite loop

20



the xv6 scheduler: entering/leaving for sleep
void sleep(void *chan, struct spinlock *lk) {
...
acquire(&ptable.lock);

...
p−>chan = chan;
p−>state = SLEEPING;

sched();

...
release(&ptable.lock);

...

get exclusive access to process table
before changing our state to sleeping
and before running scheduler loop

set us as SLEEPING (was RUNNING)
use “chan” to remember why
(so others process can wake us up)

…and switch to the scheduler infinite loop

20



the scheduling policy problem

what RUNNABLE program should we run?

xv6 answer: whatever’s next in list

best answer?
well, what do you care about?

21



some simplifying assumptions

welcome to 1970:

one program per user

one thread per program

programs are independent

22



recall: scheduling queues

ready queue CPU

I/O I/O queues I/O system call

timer/etc. interrupt

wait/… system callwait queues

23



CPU and I/O bursts
…

compute
start read
(from file/keyboard/…)

wait for I/O

compute on read data
start read
wait for I/O

compute on read data
start write
wait for I/O

…

program alternates between computing
and waiting for I/O

examples:
shell: wait for keypresses
drawing program: wait for mouse presses/etc.
web browser: wait for remote web server
…

24



CPU bursts and interactivity (one c. 1966 shared system)

shows compute time
from command entered
until next command prompt

from G. E. Bryan, “JOSS: 20,000 hours at a console—a statistical approach” in Proc. AFIPS 1967 FJCC 25



CPU bursts and interactivity (one c. 1990 desktop)

shows CPU time
from RUNNING
until not RUNNABLE
anymore

from Curran and Stumm, “A Comparison of basic CPU Scheduling Algoirithms for Multiprocessor Unix” 26



CPU bursts

observation: applications alternate between I/O and CPU
especially interactive applications
but also, e.g., reading and writing from disk

typically short “CPU bursts” (milliseconds) followed by short “IO
bursts” (milliseconds)

27



scheduling CPU bursts

our typical view: ready queue, bunch of CPU bursts to run

to start: just look at running what’s currently in ready queue best
same problem as ‘run bunch of programs to completion’?

later: account for I/O after CPU burst

28



an historical note

historically applications were less likely to keep all data in memory

historically computers shared between more users

meant more applications alternating I/O and CPU

context many scheduling policies were developed in

29



scheduling metrics

response time (want low)
what user sees: from keypress to character on screen
(submission until job finsihed)

throughput (want high)
total work per second
problem: overhead (e.g. from context switching)

fairness
many definitions
all conflict with best average throughput/response time

30



response and wait time

wait for input ready running

response time
+

waiting time
(= response time - running time)

common measure: mean response time or total response time

same as optimizing total/mean waiting time

31



response and wait time

wait for input ready running

response time
+

waiting time
(= response time - running time)

common measure: mean response time or total response time

same as optimizing total/mean waiting time

31



response and wait time

wait for input ready running

response time
+

waiting time
(= response time - running time)

common measure: mean response time or total response time

same as optimizing total/mean waiting time

31



response time and I/O

scheduling CPU bursts?
response time ≈ time to next I/O
important for fully utilizing I/O devices
closed loop: faster response time → program requests CPU sooner

scheduling batch program on cluster?
response time ≈ how long does user wait
once program done with CPU, it’s probably done

32



throughput

run A
(3 units)

context switch(each .5 units)

run B
(3 units)

run A
(2 units)

throughput: useful work done per unit time

non-context switch CPU utilization = 3 + 3 + 2
3 + .5 + 3 + .5 + 2

= 88%

also other considerations:
time lost due to cold caches
time lost not starting I/O early as possible
…

33



fairness

timeline 1 run A run B

timeline 2run A run B run A run B run A run B run A run B

assumption: one program per user

two timelines above; which is fairer?

easy to answer — but formal definition?

34



fairness

timeline 1 run A run B

timeline 2run A run B run A run B run A run B run A run B

assumption: one program per user

two timelines above; which is fairer?

easy to answer — but formal definition?

34



two trivial scheduling algorithms

first-come first served (FCFS)

round robin (RR)

35



scheduling example assumptions

multiple programs become ready at almost the same time
alternately: became ready while previous program was running

…but in some order that we’ll use
e.g. our ready queue looks like a linked list

36



two trivial scheduling algorithms

first-come first served (FCFS)

round robin (RR)

37



first-come, first-served

simplest(?) scheduling algorithm

no preemption — run program until it can’t
suitable in cases where no context switch
e.g. not enough memory for two active programs

38



first-come, first-served (FCFS)

(AKA “first in, first out” (FIFO))
process CPU time needed

A 24
B 4
C 3

A ∼ CPU-bound
B, C ∼ I/O bound or interactive

arrival order: A, B, C

A B C
0 10 20 30

waiting times: (mean=17.3)
0 (A), 24 (B), 28 (C)
response times: (mean=27.7)
24 (A), 28 (B), 31 (C)

arrival order: B, C, A

B C A
0 10 20 30

waiting times: (mean=3.7)
7 (A), 0 (B), 4 (C)
response times: (mean=14)
31 (A), 4 (B), 7 (C)

39



first-come, first-served (FCFS)

(AKA “first in, first out” (FIFO))
process CPU time needed

A 24
B 4
C 3

A ∼ CPU-bound
B, C ∼ I/O bound or interactive

arrival order: A, B, C

A B C
0 10 20 30

waiting times: (mean=17.3)
0 (A), 24 (B), 28 (C)
response times: (mean=27.7)
24 (A), 28 (B), 31 (C)

arrival order: B, C, A

B C A
0 10 20 30

waiting times: (mean=3.7)
7 (A), 0 (B), 4 (C)
response times: (mean=14)
31 (A), 4 (B), 7 (C)

39



first-come, first-served (FCFS)

(AKA “first in, first out” (FIFO))
process CPU time needed

A 24
B 4
C 3

A ∼ CPU-bound
B, C ∼ I/O bound or interactive

arrival order: A, B, C

A B C
0 10 20 30

waiting times: (mean=17.3)
0 (A), 24 (B), 28 (C)
response times: (mean=27.7)
24 (A), 28 (B), 31 (C)

arrival order: B, C, A

B C A
0 10 20 30

waiting times: (mean=3.7)
7 (A), 0 (B), 4 (C)
response times: (mean=14)
31 (A), 4 (B), 7 (C)

39



first-come, first-served (FCFS)

(AKA “first in, first out” (FIFO))
process CPU time needed

A 24
B 4
C 3

A ∼ CPU-bound
B, C ∼ I/O bound or interactive

arrival order: A, B, C

A B C
0 10 20 30

waiting times: (mean=17.3)
0 (A), 24 (B), 28 (C)
response times: (mean=27.7)
24 (A), 28 (B), 31 (C)

arrival order: B, C, A

B C A
0 10 20 30

waiting times: (mean=3.7)
7 (A), 0 (B), 4 (C)
response times: (mean=14)
31 (A), 4 (B), 7 (C)

39



first-come, first-served (FCFS)

(AKA “first in, first out” (FIFO))
process CPU time needed

A 24
B 4
C 3

A ∼ CPU-bound
B, C ∼ I/O bound or interactive

arrival order: A, B, C

A B C
0 10 20 30

waiting times: (mean=17.3)
0 (A), 24 (B), 28 (C)
response times: (mean=27.7)
24 (A), 28 (B), 31 (C)

arrival order: B, C, A

B C A
0 10 20 30

waiting times: (mean=3.7)
7 (A), 0 (B), 4 (C)
response times: (mean=14)
31 (A), 4 (B), 7 (C)

39



first-come, first-served (FCFS)

(AKA “first in, first out” (FIFO))
process CPU time needed

A 24
B 4
C 3

A ∼ CPU-bound
B, C ∼ I/O bound or interactive

arrival order: A, B, C

A B C
0 10 20 30

waiting times: (mean=17.3)
0 (A), 24 (B), 28 (C)
response times: (mean=27.7)
24 (A), 28 (B), 31 (C)

arrival order: B, C, A

B C A
0 10 20 30

waiting times: (mean=3.7)
7 (A), 0 (B), 4 (C)
response times: (mean=14)
31 (A), 4 (B), 7 (C) 39



FCFS orders

arrival order: A, B, C

A B C
0 10 20 30

waiting times: (mean=17.3)
0 (A), 24 (B), 28 (C)
response times: (mean=27.7)
24 (A), 28 (B), 31 (C)

arrival order: B, C, A

B C A
0 10 20 30

waiting times: (mean=3.7)
7 (A), 0 (B), 4 (C)
response times: (mean=14)
31 (A), 3 (B), 7 (C)

“convoy effect”

40



two trivial scheduling algorithms

first-come first served (FCFS)

round robin (RR)

41



round-robin

simplest(?) preemptive scheduling algorithm

run program until either
it can’t run anymore, or
it runs for too long (exceeds “time quantum”)

requires good way of interrupting programs
like xv6’s timer interrupt

requires good way of stopping programs whenever
like xv6’s context switches

42



round robin (RR) (varying order)

time quantum = 1,
order A, B, C

ABCABCABCAB A

0 10 20 30

waiting times: (mean=6.7)
7 (A), 7 (B), 6 (C)
response times: (mean=17)
31 (A), 11 (B), 9 (C)

time quantum = 1,
order B, C, A

BCABCABCAB A

0 10 20 30

waiting times: (mean=6)
7 (A), 6 (B), 5 (C)
response times: (mean=16.3)
31 (A), 10 (B), 8 (C)

43



round robin (RR) (varying order)

time quantum = 1,
order A, B, C

ABCABCABCAB A

0 10 20 30

waiting times: (mean=6.7)
7 (A), 7 (B), 6 (C)
response times: (mean=17)
31 (A), 11 (B), 9 (C)

time quantum = 1,
order B, C, A

BCABCABCAB A

0 10 20 30

waiting times: (mean=6)
7 (A), 6 (B), 5 (C)
response times: (mean=16.3)
31 (A), 10 (B), 8 (C)

43



round robin (RR) (varying time quantum)

time quantum = 1,
order A, B, C

ABCABCABCAB A

0 10 20 30

waiting times: (mean=6.7)
7 (A), 7 (B), 6 (C)
response times: (mean=17)
31 (A), 11 (B), 9 (C)

time quantum = 2,
order A, B, C
A B C A B C A

0 10 20 30

waiting times: (mean=7)
7 (A), 6 (B), 8 (C)
response times: (mean=17.3)
31 (A), 10 (B), 11 (C)

44



round robin (RR) (varying time quantum)

time quantum = 1,
order A, B, C

ABCABCABCAB A

0 10 20 30

waiting times: (mean=6.7)
7 (A), 7 (B), 6 (C)
response times: (mean=17)
31 (A), 11 (B), 9 (C)

time quantum = 2,
order A, B, C
A B C A B C A

0 10 20 30

waiting times: (mean=7)
7 (A), 6 (B), 8 (C)
response times: (mean=17.3)
31 (A), 10 (B), 11 (C)

44



round robin idea

choose fixed time quantum Q
unanswered question: what to choose

switch to next process in ready queue after time quantum expires

this policy is what xv6 scheduler does
scheduler runs from timer interrupt (or if process not runnable)
finds next runnable process in process table

45



round robin and time quantums

RR with
short quantum FCFS

order doesn’t matter
(more fair)

first program favored
(less fair)

many context switches
(lower throughput)

few context switches
(higher throughput)

smaller quantum: more fair, worse throughput

FCFS = RR with infinite quantum
more fair: at most (N − 1)Q time until scheduled if N total processes

but what about response time?

46



round robin and time quantums

RR with
short quantum FCFS

order doesn’t matter
(more fair)

first program favored
(less fair)

many context switches
(lower throughput)

few context switches
(higher throughput)

smaller quantum: more fair, worse throughput
FCFS = RR with infinite quantum

more fair: at most (N − 1)Q time until scheduled if N total processes

but what about response time?

46



aside: context switch overhead

typical context switch: ∼ 0.01 ms to 0.1 ms
but tricky: lot of indirect cost (cache misses)
(above numbers try to include likely indirect costs)

choose time quantum to manage this overhead

current Linux default: between ∼0.75 ms and ∼6 ms
varied based on number of active programs
Linux’s scheduler is more complicated than RR

historically common: 1 ms to 100 ms

47



round robin and time quantums

RR with
short quantum FCFS

order doesn’t matter
(more fair)

first program favored
(less fair)

many context switches
(lower throughput)

few context switches
(higher throughput)

smaller quantum: more fair, worse throughput
FCFS = RR with infinite quantum

more fair: at most (N − 1)Q time until scheduled if N total processes

but what about response time? 48



exercise: round robin quantum

if there were no context switch overhead, decreasing the time
quantum (for round robin) would cause average response time to

.

A. always decrease or stay the same

B. always increase of stay the same

C. increase or decrease or stay the same

D. something else?

49



increase response time

A: 1 unit CPU burst
B: 1 unit

Q = 1

Q = 1/2

A B
mean response time =
(1 + 2) ÷ 2 = 1.5

mean response time =
(1.5 + 2) ÷ 2 = 1.75

50



decrease response time

A: 10 unit CPU burst
B: 1 unit

Q = 10

Q = 5

A B
mean response time =
(10 + 11) ÷ 2 = 10.5

mean response time =
(6 + 11) ÷ 2 = 8.5

51



stay the same

A: 1 unit CPU burst
B: 1 unit

Q = 10

Q = 1

A B

52



FCFS and order

earlier we saw that with FCFS, arrival order mattered

big changes in response time

let’s use that insight to see how to optimize response time

53



FCFS orders
arrival order: A, B, C

A B C
0 10 20 30
waiting times: (mean=17.3)
0 (A), 24 (B), 28 (C)
response times: (mean=27.7)
24 (A), 28 (B), 31 (C)

arrival order: B, C, A
C B A

0 10 20 30
waiting times: (mean=3.3)
7 (A), 3 (B), 0 (C)
response times: (mean=13.7)
31 (A), 7 (B), 3 (C)

arrival order: B, C, A
B C A

0 10 20 30
waiting times: (mean=3.7)
7 (A), 0 (B), 4 (C)
response times: (mean=14)
31 (A), 4 (B), 7 (C) 54



order and response time

best response time = run shortest CPU burst first

worst response time = run longest CPU burst first

intuition: “race to go to sleep”

55



diversion: some users are more equal

shells more important than big computation?
i.e. programs with short CPU bursts

faculty more important than students?

scheduling algorithm: schedule shells/faculty programs first

56



priority scheduling

priority 15
…
priority 3
priority 2
priority 1
priority 0

ready queues for each priority level

process A process B

process C
process D process E process F

choose process from ready queue for highest priority
within each priority, use some other scheduling (e.g. round-robin)

could have each process have unique priority
57



priority scheduling and preemption

priority scheduling can be preemptive

i.e. higher priority program comes along — stop whatever else was
running

58



exercise: priority scheduling (1)

Suppose there are two processes:

process A
highest priority
repeat forever: 1 unit of I/O, then 10 units of CPU, …

process Z
lowest priority
4000 units of CPU (and no I/O)

How long will it take process Z complete?

59



exercise: priority scheduling (2)

Suppose there are three processes:
process A

highest priority
repeat forever: 1 unit of I/O, then 10 units of CPU, …

process B
second-highest priority
repeat forever: 1 unit of I/O, then 10 units of CPU, …

process Z
lowest priority
4000 units of CPU (and no I/O)

How long will it take process Z complete?
60



starvation

programs can get “starved” of resources

never get those resources because of higher priority

big reason to have a ‘fairness’ metric

61



minimizing response time

recall: first-come, first-served best order:
had shortest CPU bursts first

→ scheduling algorithm: ‘shortest job first’ (SJF)

= same as priority where CPU burst length determines priority

…but without preemption for now
we’ll talk about how to add preemption later (called SRTF)
(the simplest possible idea doesn’t quite work)

62



a practical problem

so we want to run the shortest CPU burst first

how do I tell which thread that is?

we’ll deal with this problem later

…kinda

63



alternating I/O and CPU: SJF

program A CPU I/O …

program B C
P
U

I/O …

program C …

shortest CPU burst not run immediately
still have “convoy effect”

64



alternating I/O and CPU: SJF

program A CPU I/O …

program B C
P
U

I/O …

program C …

shortest CPU burst not run immediately
still have “convoy effect”

64



alternating I/O and CPU: SJF

program A CPU I/O …

program B C
P
U

I/O …

program C …

shortest CPU burst not run immediately
still have “convoy effect”

64



backup slides

65



xv6: fork (1)

int
fork(void) {
...
// Allocate process.
if((np = allocproc()) == 0){
return −1;

}

// Copy process state from proc.
if((np−>pgdir = copyuvm(curproc−>pgdir, curproc−>sz)) == 0){
... /* handle error */

}
np−>sz = curproc−>sz
np−>parent = curproc;
*np−>tf = *curproc−>tf;

// Clear %eax so that fork returns 0 in the child.
np−>tf−>eax = 0;

66



xv6: fork (2)

int
fork(void) {
...
for(i = 0; i < NOFILE; i++)
if(curproc−>ofile[i])

np−>ofile[i] = filedup(curproc−>ofile[i]);
np−>cwd = idup(curproc−>cwd);

67



exercise

pid_t p = fork();
int pipe_fds[2];
pipe(pipe_fds);
if (p == 0) { /* child */
close(pipe_fds[0]);
char c = 'A';
write(pipe_fds[1], &c, 1);
exit();

} else { /* parent */
close(pipe_fds[1]);
char c;
int count = read(pipe_fds[0], &c, 1);
printf("read␣%d␣bytes\n", count);

}

The child is trying to send the character A to the parent.
But the above code outputs read 0 bytes instead of read 1
bytes.
What happened?

68



exercise solution

pipe() is after fork — two pipes, one in child, one in parent

69



exercise

int pipe_fds[2]; pipe(pipe_fds);
pid_t p = fork();
if (p == 0) {
close(pipe_fds[0]);
for (int i = 0; i < 10; ++i) {

char c = '0' + i;
write(pipe_fds[1], &c, 1);

}
exit();

}
close(pipe_fds[1]);
char buffer[10];
ssize_t count = read(pipe_fds[0], buffer, 10);
for (int i = 0; i < count; ++i) {
printf("%c", buffer[i]);

}

Which are possible outputs (if pipe, read, write, fork don’t fail)?
A. 0123456789 B. 0 C. (nothing)
D. A and B E. A and C F. A, B, and C 70



exercise

int pipe_fds[2]; pipe(pipe_fds);
pid_t p = fork();
if (p == 0) {
close(pipe_fds[0]);
for (int i = 0; i < 10; ++i) {

char c = '0' + i;
write(pipe_fds[1], &c, 1);

}
exit();

}
close(pipe_fds[1]);
char buffer[10];
ssize_t count = read(pipe_fds[0], buffer, 10);
for (int i = 0; i < count; ++i) {
printf("%c", buffer[i]);

}

Which are possible outputs (if pipe, read, write, fork don’t fail)?
A. 0123456789 B. 0 C. (nothing)
D. A and B E. A and C F. A, B, and C 70



partial reads

read returning 0 always means end-of-file
by default, read always waits if no input available yet
but can set read to return error instead of waiting

read can return less than requested if not available
e.g. child hasn’t gotten far enough

71


	xv6: process table
	loose end: xv6: creating the first process
	on threads versus processes
	thread states and queues
	the scheduler concept
	xv6 scheduler and policy
	the scheduling policy problem
	alternating I/O and CPU
	scheduling metrics
	FCFS and RR
	FCFS
	round robin
	context switch overhead
	RR and response times
	FCFS response time tradeoff

	priority
	SJF, SRTF
	SJF

	backup slides
	xv6: fork
	extra pipe exercises


